Supporting Information

Structure and optoelectronic properties of helical pyridine-furan, pyridine-pyrrole and pyridine-thiophene oligomers

Harikrishna Sahu, Shashwat Gupta, Priyank Gaur, and Aditya N. Panda

LIST OF FIGURES

S1	Differences in energies (ΔE) between the two possible conformations (i.e.,	
	$E_i-E_{ii})$ of monomers calculated using B3LYP, CAM-B3LYP, B3LYP-D3	
	and M06-2X functionals in combination with $6\text{-}31\mathrm{G}(\mathrm{d})$ basis set. Structures	
	of conformations i and ii for $(PF)_1$ are shown in Fig. 2	6
S2	Relaxed potential energy curves along $\angle 1$ -2-3-4, for $(PF)_1$ (a), $(PP)_1$ (b) and	
	$(PT)_1$ (c). Energies are relative to the energy of the most stable structure in	
	each case	7
S3	Optimized structures of conformers ${\bf C}$ and ${\bf D}$ of $({\rm PF})_2$ calculated at B3LYP-	
	D3/6-31G(d) level	8
S4	Energies of different conformations of $(PF)_2$, $(PP)_2$ and $(PT)_2$ with respect	
	to that of \mathbf{A} calculated at B3LYP-D3/6-31G(d) level	9
S5	Stabilization energies of the studied compounds at the $B3LYP/6-31G(d)$ level.	
	$S_{\rm nb} = [E_n - n \times E_1] - [(n-1)(E_2 - 2 \times E_1)]$ (a) and $s_{\rm nb} = (E_n - E_{n-1}) - (E_2 - E_1)$	
	(b) are plotted versus $n > 1$. Here, n and E_n are the number of repeating	
	units and ground state energy of an oligomer having n number of repeating	
	units, respectively	10
S6	Optimized structures of \mathbf{B} -(PP) ₃ (a), \mathbf{B} -(PP) ₁₀ (b) and \mathbf{A} -(PP) ₁₆ (c) obtained	
	at B3LYP-D3/6-31G(d) level.	11
S7	Optimized structures of \mathbf{B} -(PT) ₄ (a), \mathbf{B} -(PT) ₁₀ (b) and \mathbf{A} -(PT) ₁₀ (c) obtained	
	at B3LYP-D3/6-31G(d) level.	12
S8	Bond length alternation (Δr) values calculated as $(\frac{r_a+r_c+r_e}{3}-\frac{r_b+r_d}{2})/n$. Here,	
	r_x is bond length of the x bond in each repeating unit of an oligomer. These	
	bonds are shown in Fig 1	13
S9	Optimized structures of A -(PT) ₈ obtained at B3LYP-D3/6-31G(d) level	14
S10	Energies of HOMO and LUMO for all the studied compounds calculated at	
	B3LYP-D3/6-31G(d) level. $E_{\rm H}$ and $E_{\rm L}$ represent energies of HOMO and	
	LUMO, respectively. n stands for the number of repeating units. u values	
	of A-PF, B-PF, A-PP, B-PP, A-PT and B-PT oligomers are 23, 3, 15, 3, 8	
	and 4, respectively	15
S11	HOMO and LUMO of \mathbf{B} -(PF) ₁₀ at an isosurface value of 0.02	16

S12	Frontier molecular orbitals of \mathbf{A} -(PP) ₁₆ , \mathbf{B} -(PP) ₁₀ , \mathbf{A} -(PT) ₁₀ and \mathbf{B} -(PT) ₁₀	
	at an isosurface value of 0.02	17
S13	CD spectra vs oligomer chain length of A -(PT)	18

LIST OF TABLES

Differences in energies between the two possible conformations (i.e., $E_i - E_{ii}$)	
of monomers calculated using B3LYP, CAM-B3LYP, B3LYP-D3 and M06-2X	
functionals in combination with 6-31 G(d) basis set. Values are in kcal/mol	19
Energies of different conformations of $(PF)_2$, $(PP)_2$ and $(PT)_2$ with respect	
to that of \mathbf{A} calculated at B3LYP-D3/6-31G(d) level. Values are in kcal/mol.	19
The expectation values of the total spin, $\langle S^2 \rangle$, before annihilation (ba) and	
after annihilation (aa) of the studied molecules	20
Electronic transition data obtained by TDDFT method for \mathbf{A} -(PP) _n and \mathbf{B} -	
$(\mathrm{PP})_n$ at B3LYP-D3/6-31G(d) level. $E_\mathrm{g},~f_\mathrm{osc},~\mathrm{H}$ and L denote excitation	
energy, oscillator strength, HOMO and LUMO, respectively. Electronic tran-	
sitions are from S_0 to S_m . E_gs are in eV	21
Electronic transition data obtained by TDDFT method for \mathbf{A} -(PT) _n and \mathbf{B} -	
$(\mathrm{PT})_n$ at B3LYP-D3/6-31G(d) level. $E_\mathrm{g},~f_\mathrm{osc},~\mathrm{H}$ and L denote excitation	
energy, oscillator strength, HOMO and LUMO, respectively. Electronic tran-	
sitions are from S_0 to S_m . E_gs are in eV	22
xyz coordinates of the optimized structure of \mathbf{A} -(PF) ₁₀ obtained at B3LYP-	
D3/6-31G(d) level	23
xyz coordinates of the optimized structure of A -(PF) ₂₄ obtained at B3LYP/3-	
21G level.	29
xyz coordinates of the optimized structure of \mathbf{B} -(PF) ₁₀ obtained at B3LYP-	
D3/6-31G(d) level	42
xyz coordinates of the optimized structure of A -(PP) ₁₀ obtained at B3LYP-	
D3/6-31G(d) level	48
xyz coordinates of the optimized structure of \mathbf{A} -(PP) ₁₆ obtained at B3LYP-	
D3/6-31G(d) level	54
xyz coordinates of the optimized structure of \mathbf{B} -(PP) ₁₀ obtained at B3LYP-	
D3/6-31G(d) level	64
xyz coordinates of the optimized structure of \mathbf{A} -(PT) ₁₀ obtained at B3LYP-	
D3/6-31G(d) level	70
	Differences in energies between the two possible conformations (i.e., $E_i - E_{ii}$) of monomers calculated using B3LYP, CAM-B3LYP, B3LYP-D3 and M06-2X functionals in combination with 6-31G(d) basis set. Values are in kcal/mol Energies of different conformations of (PF) ₂ , (PP) ₂ and (PT) ₂ with respect to that of A calculated at B3LYP-D3/6-31G(d) level. Values are in kcal/mol. The expectation values of the total spin, $<$ S ² >, before annihilation (ba) and after annihilation (aa) of the studied molecules

S13	xyz coordinates of the optimized structure of \mathbf{B} -(PT) ₁₀ obtained at B3LYP-	
	D3/6-31G(d) level	76

FIG. S1. Differences in energies (ΔE) between the two possible conformations (i.e., $E_i - E_{ii}$) of monomers calculated using B3LYP, CAM-B3LYP, B3LYP-D3 and M06-2X functionals in combination with 6-31G(d) basis set. Structures of conformations i and ii for (PF)₁ are shown in Fig. 2.

FIG. S2. Relaxed potential energy curves along $\angle 1$ -2-3-4, for $(PF)_1$ (a), $(PP)_1$ (b) and $(PT)_1$ (c). Energies are relative to the energy of the most stable structure in each case.

FIG. S3. Optimized structures of conformers C and D of $(PF)_2$ calculated at B3LYP-D3/6-31G(d) level.

FIG. S4. Energies of different conformations of $(PF)_2$, $(PP)_2$ and $(PT)_2$ with respect to that of **A** calculated at B3LYP-D3/6-31G(d) level.

FIG. S5. Stabilization energies of the studied compounds at the B3LYP/6-31G(d) level. $S_{nb} = [E_n - n \times E_1] - [(n-1)(E_2 - 2 \times E_1)]$ (a) and $s_{nb} = (E_n - E_{n-1}) - (E_2 - E_1)$ (b) are plotted versus n > 1. Here, n and E_n are the number of repeating units and ground state energy of an oligomer having n number of repeating units, respectively.

FIG. S6. Optimized structures of \mathbf{B} -(PP)₃ (a), \mathbf{B} -(PP)₁₀ (b) and \mathbf{A} -(PP)₁₆ (c) obtained at B3LYP-D3/6-31G(d) level.

FIG. S7. Optimized structures of \mathbf{B} -(PT)₄ (a), \mathbf{B} -(PT)₁₀ (b) and \mathbf{A} -(PT)₁₀ (c) obtained at B3LYP-D3/6-31G(d) level.

FIG. S8. Bond length alternation (Δr) values calculated as $(\frac{r_a+r_c+r_e}{3}-\frac{r_b+r_d}{2})/n$. Here, r_x is bond length of the x bond in each repeating unit of an oligomer. These bonds are shown in Fig 1.

FIG. S9. Optimized structures of $\mathbf{A}\text{-}(\mathrm{PT})_8$ obtained at B3LYP-D3/6-31G(d) level.

FIG. S10. Energies of HOMO and LUMO for all the studied compounds calculated at B3LYP-D3/6-31G(d) level. $E_{\rm H}$ and $E_{\rm L}$ represent energies of HOMO and LUMO, respectively. n stands for the number of repeating units. u values of **A**-PF, **B**-PF, **A**-PP, **B**-PP, **A**-PT and **B**-PT oligomers are 23, 3, 15, 3, 8 and 4, respectively.

FIG. S11. HOMO and LUMO of $\mathbf{B}\text{-}(\mathrm{PF})_{10}\mathrm{at}$ an isosurface value of 0.02.

FIG. S12. Frontier molecular orbitals of \mathbf{A} -(PP)₁₆, \mathbf{B} -(PP)₁₀, \mathbf{A} -(PT)₁₀ and \mathbf{B} -(PT)₁₀ at an isosurface value of 0.02.

FIG. S13. CD spectra vs oligomer chain length of A-(PT).

TABLE S1. Differences in energies between the two possible conformations (i.e., $E_i - E_{ii}$) of monomers calculated using B3LYP, CAM-B3LYP, B3LYP-D3 and M06-2X functionals in combination with 6-31G(d) basis set. Values are in kcal/mol.

	B3LYP	CAM-B3LYP	B3LYP-D3	M06-2X
\mathbf{PF}	-3.1	-3.2	-3.2	-3.1
PP	4.8	5.0	4.7	5.0
\mathbf{PT}	0.9	0.8	0.7	0.7

TABLE S2. Energies of different conformations of $(PF)_2$, $(PP)_2$ and $(PT)_2$ with respect to that of **A** calculated at B3LYP-D3/6-31G(d) level. Values are in kcal/mol.

	$E_{\mathbf{B}}$ - $E_{\mathbf{A}}$	$E_{\mathbf{C}}$ - $E_{\mathbf{A}}$	$E_{\mathbf{D}}$ - $E_{\mathbf{A}}$
PF	10.5	2.5	5.7
PP	-11.9	-5.0	-9.4
\mathbf{PT}	-2.0	-1.2	-2.0

n	A-	PF	B-	PF	A-PP		B- PP		A-PT		B- PT	
	ba	aa	ba	aa	ba	aa	ba	aa	ba	aa	ba	aa
1	0.7652	0.7502	0.7647	0.7502	0.7661	0.7502	0.7652	0.7502	0.7665	0.7502	0.7658	0.7502
2	0.7661	0.7502	0.7663	0.7502	0.7678	0.7503	0.7684	0.7503	0.7669	0.7502	0.768	0.7503
3	0.7644	0.7502	0.7649	0.7502	0.7654	0.7502	0.7667	0.7502	0.7652	0.7502	0.7664	0.7502
4	0.7617	0.7501	0.7623	0.7501	0.7623	0.7501	0.7624	0.7501	0.7623	0.7501	0.7643	0.7502
5	0.7596	0.7501	0.7606	0.7501	0.7602	0.7501	0.7612	0.7501	0.7602	0.7501	0.761	0.7501
6	0.7583	0.7501	0.7597	0.7501	0.7587	0.7501	0.7598	0.7501	0.7588	0.7501	0.7595	0.7501
7	0.7573	0.7501	0.757	0.75	0.7577	0.7501	0.7576	0.7501	0.7578	0.7501	0.7585	0.7501
8	0.7565	0.75	0.7567	0.75	0.7568	0.75	0.7569	0.75	0.7568	0.75	0.7578	0.7501
9	0.7558	0.75	0.7571	0.7501	0.7562	0.75	0.757	0.7501	0.7564	0.75	0.7561	0.75
10	0.7553	0.75	0.7578	0.7501	0.7556	0.75	0.7561	0.75	0.7556	0.75	0.7582	0.7501
16	0.7534	0.75			0.7536	0.75						
24	0.7525	0.75										

TABLE S3. The expectation values of the total spin, $\langle S^2 \rangle$, before annihilation (ba) and after annihilation (aa) of the studied molecules.

TABLE S4. Electronic transition data obtained by TDDFT method for \mathbf{A} -(PP)_n and \mathbf{B} -(PP)_n at B3LYP-D3/6-31G(d) level. E_{g} , f_{osc} , H and L denote excitation energy, oscillator strength, HOMO and LUMO, respectively. Electronic transitions are from S₀ to S_m. E_{gs} are in eV.

-					 				
n (A)	m	$E_{\rm g}$	$f_{\rm osc}$	Configuration/s	n (B)	\overline{m}	$E_{\rm g}$	$f_{\rm osc}$	Configuration/s
1	1	4.13	0.145	$\mathrm{H} \rightarrow \mathrm{L} \ (55\%)$	1	1	4.12	0.165	$\mathrm{H} \rightarrow \mathrm{L} \; (62\%)$
				$\mathrm{H} \rightarrow \mathrm{L{+}1}~(42\%)$		14	7.51	0.407	$\text{H-4} \rightarrow \text{L+1} \ (40\%)$
	2	4.49	0.427	$\mathrm{H} \rightarrow \mathrm{L}~(44\%)$	2	1	3.37	0.390	$\mathrm{H} \rightarrow \mathrm{L} \; (86\%)$
				$\mathrm{H} \rightarrow \mathrm{L{+}1}~(54\%)$		2	3.79	0.344	$\text{H-1} \rightarrow \text{L} (88\%)$
2	1	3.49	0.416	$\mathrm{H} \rightarrow \mathrm{L}~(63\%)$	3	1	3.10	0.092	$\mathrm{H} \rightarrow \mathrm{L} \; (86\%)$
	2	3.70	0.570	$\text{H-1} \rightarrow \text{L} (38\%)$		8	3.97	0.595	$\text{H-2} \rightarrow \text{L+1} \; (34\%)$
				$\mathrm{H} \rightarrow \mathrm{L}~(31\%)$	4	1	3.01	0.025	$\text{H-1} \rightarrow \text{L} (45\%)$
3	1	3.33	0.250	$\mathrm{H} \rightarrow \mathrm{L{+}1}~(74\%)$					$\mathrm{H} \rightarrow \mathrm{L{+}1}~(33\%)$
	2	3.41	0.907	$\mathrm{H} \rightarrow \mathrm{L}~(46\%)$		14	3.98	0.373	$\text{H-3} \rightarrow \text{L} (20\%)$
4	1	3.29	0.872	$\mathrm{H} \rightarrow \mathrm{L{+}2}~(54\%)$					$\mathrm{H} \rightarrow \mathrm{L}{+4}~(25\%)$
5	1	3.26	2.407	$\mathrm{H} \rightarrow \mathrm{L{+}3}~(55\%)$	5	1	2.94	0.025	$\mathrm{H} \rightarrow \mathrm{L{+1}}~(64\%)$
6	1	3.24	3.023	$\mathrm{H} \rightarrow \mathrm{L}{+4}~(43\%)$		21	3.93	0.397	$\text{H-4} \rightarrow \text{L+3} \; (23\%)$
7	1	3.22	3.340	$\mathrm{H} \rightarrow \mathrm{L{+}5}~(33\%)$	6	1	2.83	0.015	$\mathrm{H} \rightarrow \mathrm{L} \; (86\%)$
				$\text{H-1} \rightarrow \text{L-4}~(22\%)$		37	4.06	0.617	$\text{H-5} \rightarrow \text{L+3} \; (18\%)$
8	1	3.20	3.399	$\mathrm{H} \rightarrow \mathrm{L}{+6}~(27\%)$	7	1	2.84	0.015	$\mathrm{H} \rightarrow \mathrm{L} \; (46\%)$
				$\text{H-1} \rightarrow \text{L+5} \ (20\%)$	8	1	2.84	0.012	$\mathrm{H} \rightarrow \mathrm{L} \; (46\%)$
9	1	3.19	3.209	$\mathrm{H} \rightarrow \mathrm{L{+7}}~(21\%)$	9	1	2.84	0.022	$\text{H-1} \rightarrow \text{L+1} \; (32\%)$
				$\text{H-1} \rightarrow \text{L+6} \ (19\%)$	10	1	2.80	0.003	$\mathrm{H} \rightarrow \mathrm{L} \; (75\%)$
10	1	3.18	2.885	$\mathrm{H} \rightarrow \mathrm{L{+}8}~(19\%)$		114	4.15	0.243	$H-2 \rightarrow L+13 \ (14\%)$
				$\text{H-1} \rightarrow \text{L+7} \ (17\%)$					$\mathrm{H} \rightarrow \mathrm{L{+}18}~(12\%)$
	2	3.27	3.484	$\mathrm{H} \rightarrow \mathrm{L}{+7} \; (14\%)$		117	4.18	0.310	$\text{H-9} \rightarrow \text{L+7} \; (13\%)$
				$\mathrm{H} \rightarrow \mathrm{L{+}8}~(12\%)$					$H-2 \to L+15 \ (15\%)$
16	1	2.98	0.069	$\mathrm{H} \rightarrow \mathrm{L} \ (47\%)$					
	5	3.21	3.595	$\mathrm{H} \rightarrow \mathrm{L{+}14}~(12\%)$					
	6	3.23	3.562	$\mathrm{H} \rightarrow \mathrm{L}~(6\%)$					
				$\mathrm{H} \rightarrow \mathrm{L}{+4}~(6\%)$					

TABLE S5. Electronic transition data obtained by TDDFT method for \mathbf{A} -(PT)_n and \mathbf{B} -(PT)_n at B3LYP-D3/6-31G(d) level. E_{g} , f_{osc} , H and L denote excitation energy, oscillator strength, HOMO and LUMO, respectively. Electronic transitions are from S₀ to S_m. E_{gs} are in eV.

$n~(\mathbf{A})$	m	$E_{\rm g}$	$f_{\rm osc}$	Configuration/s	n (B)	m	$E_{\rm g}$	$f_{\rm osc}$	Configuration/s
1	1	4.30	0.422	$\mathrm{H} \rightarrow \mathrm{L}~(90\%)$	1	1	4.26	0.400	$\mathrm{H} \to \mathrm{L} \; (92\%)$
	18	7.26	0.436	$\text{H-4} \rightarrow \text{L+1} (47\%)$		16	7.23	0.511	$\text{H-4} \rightarrow \text{L+1} (39\%)$
2	1	3.47	0.691	$\mathrm{H} \rightarrow \mathrm{L}~(82\%)$	2	1	3.40	0.555	$\mathrm{H} \rightarrow \mathrm{L} \; (85\%)$
3	1	3.28	0.732	$\mathrm{H} \rightarrow \mathrm{L{+}1}~(94\%)$	3	1	3.16	0.307	$\mathrm{H} \rightarrow \mathrm{L} \; (82\%)$
4	1	3.23	1.277	$\mathrm{H} \rightarrow \mathrm{L{+}2}~(77\%)$		4	3.62	0.422	$\text{H-1} \rightarrow \text{L} \ (61\%)$
5	1	3.20	1.495	$\mathrm{H} \rightarrow \mathrm{L{+}3}~(63\%)$	4	1	3.07	0.049	$\text{H-1} \rightarrow \text{L} (40\%)$
6	1	3.17	1.406	$\mathrm{H} \rightarrow \mathrm{L}{+4}~(53\%)$					$\mathrm{H} \rightarrow \mathrm{L{+}1}~(42\%)$
7	1	3.15	1.117	$\mathrm{H} \rightarrow \mathrm{L{+}5}~(45\%)$		5	3.43	0.459	$\text{H-1} \rightarrow \text{L+2} \ (72\%)$
	2	3.25	1.592	$\mathrm{H} \rightarrow \mathrm{L}{+4}~(42\%)$	5	1	2.98	0.015	$\mathrm{H} \rightarrow \mathrm{L} \; (56\%)$
8	1	3.13	0.016	$\mathrm{H} \rightarrow \mathrm{L}{+4}~(13\%)$		24	4.02	0.389	$\text{H-4} \rightarrow \text{L+3} \ (60\%)$
	2	3.23	0.651	$\text{H-1} \rightarrow \text{L+4} \ (21\%)$	6	1	2.96	0.019	$\mathrm{H} \rightarrow \mathrm{L{+}1}~(56\%)$
				$\mathrm{H} \rightarrow \mathrm{L{+1}}~(30\%)$		17	3.48	0.258	$\text{H-2} \rightarrow \text{L+3} \ (23\%)$
9	1	3.07	0.065	$\mathrm{H} \rightarrow \mathrm{L{+}5}~(35\%)$	7	1	2.93	0.011	$\text{H-1} \rightarrow \text{L+1} \ (20\%)$
	6	3.21	0.635	$\mathrm{H} \rightarrow \mathrm{L{+}7}~(28\%)$					$\mathrm{H} \rightarrow \mathrm{L} \; (23\%)$
				$\text{H-1} \rightarrow \text{L+5} (17\%)$		28	3.61	0.356	$\text{H-3} \rightarrow \text{L+5} \ (44\%)$
10	1	3.02	0.252	$\mathrm{H} \rightarrow \mathrm{L{+}3}~(54\%)$	8	1	2.89	0.007	$\mathrm{H} \rightarrow \mathrm{L} \; (48\%)$
	8	3.21	0.502	$\mathrm{H} \rightarrow \mathrm{L}~(30\%)$		35	3.56	0.301	$\text{H-5} \rightarrow \text{L} \ (26\%)$
	11	3.27	0.432	$\text{H-2} \rightarrow \text{L+2} \; (18\%)$	9	1	2.87	0.008	$\text{H-1} \rightarrow \text{L} \ (26\%)$
				$\text{H-2} \rightarrow \text{L+4} \ (12\%)$					$\mathrm{H} \rightarrow \mathrm{L{+1}}~(31\%)$
						45	3.56	0.154	$\text{H-6} \rightarrow \text{L+1} \ (23\%)$
					10	1	2.85	0.005	$\mathrm{H} \rightarrow \mathrm{L} \; (49\%)$
						52	3.52	0.163	$\text{H-5} \rightarrow \text{L+5} \ (21\%)$
						54	3.54	0.144	$\text{H-4} \rightarrow \text{L+8} \ (26\%)$
						108	4.08	0.157	$\mathrm{H} \rightarrow \mathrm{L{+}10}~(19\%)$

TABLE S6: xyz coordinates of the optimized structure of $A-(PF)_{10}$ obtained at B3LYP-D3/6-31G(d) level.

С	14.2790	-0.7472	0.0001
С	15.3586	-1.5959	0.0002
С	13.5549	-2.8675	0.0002
С	13.1184	-1.5654	0.0002
С	16.7934	-1.3554	0.0002
Ν	17.1647	-0.0644	0.0001
С	18.4776	0.2198	0.0001
С	19.4740	-0.7731	0.0002
С	19.0740	-2.1058	0.0003
С	17.7173	-2.4160	0.0002
Η	20.5212	-0.4937	0.0002
Η	19.8162	-2.8995	0.0003
Η	17.3685	-3.4422	0.0003
Η	14.3391	0.3307	0.0001
Η	12.0830	-1.2597	0.0001
С	10.7970	-5.1954	0.0002
С	11.3974	-6.4675	0.0003
С	12.7872	-6.5382	0.0003
С	13.5350	-5.3646	0.0003
С	12.8463	-4.1381	0.0002
Ν	11.5057	-4.0543	0.0002
Η	10.7823	-7.3599	0.0003
Η	13.2855	-7.5038	0.0003
Η	14.6187	-5.3807	0.0003
С	7.2694	-5.7697	0.0002
С	7.2034	-4.3980	0.0002
С	8.5428	-3.9263	0.0002

С	9.3509	-5.0366	0.0002
Η	6.2901	-3.8224	0.0002
Η	8.8942	-2.9055	0.0002
0	14.9241	-2.8945	0.0002
0	8.5795	-6.1682	0.0002
С	18.8144	1.6350	0.0001
С	18.0416	2.7702	0.0000
0	20.1398	1.9799	0.0001
С	18.9373	3.8722	-0.0001
Η	16.9621	2.7838	0.0000
С	20.2065	3.3477	0.0000
Η	18.7035	4.9261	-0.0001
С	21.5229	3.9673	0.0000
С	22.6987	3.1954	0.0001
Ν	21.5316	5.3106	-0.0001
С	23.9212	3.8603	0.0001
Η	22.6398	2.1131	0.0002
С	22.7190	5.9388	-0.0001
С	23.9465	5.2516	0.0000
Η	24.8502	3.2966	0.0001
С	22.6613	7.3922	-0.0002
Η	24.8793	5.8034	0.0000
С	21.6101	8.2759	-0.0003
0	23.8441	8.0828	-0.0002
С	22.1737	9.5792	-0.0003
Η	20.5672	7.9966	-0.0003
С	23.5376	9.4178	-0.0003
Η	21.6640	10.5309	-0.0004
\mathbf{C}	24.6352	10.3715	-0.0003
Ν	24.2773	11.6724	-0.0004

С	25.9767	9.9520	-0.0003
С	25.2528	12.5818	-0.0005
С	26.9761	10.9194	-0.0003
Η	26.2131	8.8937	-0.0002
С	26.6149	12.2672	-0.0004
Η	24.9302	13.6220	-0.0006
Η	28.0223	10.6253	-0.0003
Η	27.3621	13.0547	-0.0004
С	6.2416	-6.7993	0.0002
Ν	4.9744	-6.3536	0.0002
С	6.5702	-8.1669	0.0002
С	3.9818	-7.2587	0.0001
С	5.5312	-9.0926	0.0002
Η	7.6086	-8.4777	0.0002
С	2.6339	-6.7115	0.0001
С	4.2132	-8.6461	0.0001
Η	5.7476	-10.1575	0.0002
Ο	1.5827	-7.5893	0.0001
С	2.1598	-5.4226	0.0001
Η	3.3784	-9.3374	0.0001
С	0.4312	-6.8479	0.0001
С	0.7426	-5.5104	0.0001
Η	2.7767	-4.5366	0.0002
Η	0.0210	-4.7075	0.0001
С	-0.8387	-7.5577	0.0000
Ν	-1.9360	-6.7829	0.0000
С	-0.8957	-8.9631	0.0000
\mathbf{C}	-3.1379	-7.3827	0.0000
\mathbf{C}	-2.1481	-9.5700	-0.0001
Η	0.0187	-9.5450	0.0000

С	-4.2854	-6.4883	0.0000
С	-3.2941	-8.7805	-0.0001
Η	-2.2306	-10.6535	-0.0001
0	-5.5361	-7.0461	-0.0001
С	-4.3899	-5.1191	0.0001
Η	-4.2860	-9.2175	-0.0001
С	-6.4418	-6.0188	-0.0001
С	-5.7774	-4.8169	0.0000
Η	-3.5549	-4.4349	0.0001
С	-7.8571	-6.3554	-0.0001
Η	-6.2521	-3.8473	0.0001
Ν	-8.7016	-5.3108	-0.0001
С	-8.2952	-7.6920	-0.0002
С	-10.0214	-5.5603	-0.0002
С	-9.6656	-7.9346	-0.0003
Η	-7.5743	-8.5013	-0.0003
С	-10.8820	-4.3873	-0.0001
С	-10.5530	-6.8626	-0.0003
Η	-10.0402	-8.9546	-0.0004
0	-12.2374	-4.5837	-0.0002
С	-10 6100	0.0410	
Н	10.0100	-3.0413	0.0000
	-11.6264	-3.0413 -7.0125	0.0000 -0.0003
С	-11.6264 -12.8293	-3.0413 -7.0125 -3.3487	0.0000 -0.0003 -0.0002
C C	-11.6264 -12.8293 -11.8630	-3.0413 -7.0125 -3.3487 -2.3730	0.0000 -0.0003 -0.0002 0.0000
C C H	-11.6264 -12.8293 -11.8630 -9.6202	-3.0413 -7.0125 -3.3487 -2.3730 -2.6103	0.0000 -0.0003 -0.0002 0.0000 0.0001
C C H C	-11.6264 -12.8293 -11.8630 -9.6202 -14.2828	-3.0413 -7.0125 -3.3487 -2.3730 -2.6103 -3.2870	0.0000 -0.0003 -0.0002 0.0000 0.0001 -0.0003
C C H C H	-11.6264 -12.8293 -11.8630 -9.6202 -14.2828 -12.0563	-3.0413 -7.0125 -3.3487 -2.3730 -2.6103 -3.2870 -1.3109	0.0000 -0.0003 -0.0002 0.0000 0.0001 -0.0003 0.0000
C C H C H	-11.6264 -12.8293 -11.8630 -9.6202 -14.2828 -12.0563 -14.8104	-3.0413 -7.0125 -3.3487 -2.3730 -2.6103 -3.2870 -1.3109 -2.0517	0.0000 -0.0003 -0.0002 0.0000 0.0001 -0.0003 0.0000 -0.0002
C C H C H N C	-11.6264 -12.8293 -11.8630 -9.6202 -14.2828 -12.0563 -14.8104 -15.0688	-3.0413 -7.0125 -3.3487 -2.3730 -2.6103 -3.2870 -1.3109 -2.0517 -4.4535	0.0000 -0.0003 -0.0002 0.0000 -0.0003 -0.0002 -0.0004

С	-16.4533	-4.3129	-0.0005
Η	-14.5959	-5.4287	-0.0004
С	-16.6560	-0.5682	-0.0002
С	-17.0147	-3.0395	-0.0004
Η	-17.0921	-5.1920	-0.0006
С	-16.0263	0.6522	0.0000
0	-18.0135	-0.3866	-0.0003
Η	-18.0883	-2.8910	-0.0005
С	-17.0488	1.6375	0.0000
Η	-14.9564	0.7963	0.0001
С	-18.2451	0.9632	-0.0002
Η	-16.9445	2.7120	0.0001
С	-19.6264	1.4201	-0.0003
С	-20.7013	0.5131	-0.0005
Ν	-19.7960	2.7526	-0.0001
С	-21.9946	1.0270	-0.0005
Η	-20.5131	-0.5543	-0.0006
С	-21.0500	3.2343	-0.0002
С	-22.1865	2.4052	-0.0004
Η	-22.8494	0.3560	-0.0007
С	-21.1659	4.6843	0.0000
Η	-23.1786	2.8415	-0.0005
С	-20.2274	5.6867	0.0002
0	-22.4224	5.2294	-0.0001
С	-20.9425	6.9136	0.0003
Η	-19.1588	5.5336	0.0004
С	-22.2773	6.5911	0.0001
Η	-20.5493	7.9190	0.0005
С	-23.4817	7.4076	0.0000
Ν	-23.2803	8.7361	0.0003

С	-24.7631	6.8288	-0.0003
С	-24.3542	9.5420	0.0002
С	-25.8665	7.6771	-0.0004
Η	-24.8741	5.7506	-0.0005
С	-24.0705	10.9707	0.0005
С	-25.6738	9.0552	-0.0001
Η	-26.8724	7.2659	-0.0006
0	-25.1349	11.8372	0.0004
С	-22.8988	11.6795	0.0009
Η	-26.5083	9.7468	-0.0001
С	-24.6224	13.0986	0.0007
С	-23.2592	13.0618	0.0011
Η	-21.9102	11.2459	0.0010
Η	-25.3470	13.8990	0.0007

Н -22.5938 13.9138 0.0014

TABLE S7: xyz coordinates of the optimized structure of ${\bf A}\text{-}(\mathrm{PF})_{24}$ obtained at B3LYP/3-21G level.

С	23.2564	-6.4990	-2.1206
С	21.9664	-6.1937	-1.6600
Ν	21.5167	-4.9252	-1.5415
С	22.3416	-3.9156	-1.8971
С	23.6449	-4.1379	-2.3720
С	24.1008	-5.4496	-2.4774
С	21.0351	-7.2431	-1.3018
С	19.7210	-7.2094	-0.9071
С	19.2946	-8.5622	-0.7313
С	20.3656	-9.3698	-1.0203
Ο	21.4643	-8.5749	-1.3753
С	20.5223	-10.8088	-1.0252
Ν	19.4142	-11.5354	-0.7640
С	19.5104	-12.8827	-0.7717
С	20.7187	-13.5513	-1.0268
С	21.8565	-12.7913	-1.2892
С	21.7669	-11.4009	-1.2945
С	18.2878	-13.6172	-0.5265
С	16.9978	-13.2042	-0.3060
С	16.1914	-14.3762	-0.1792
С	17.0203	-15.4602	-0.3247
Ο	18.3330	-15.0181	-0.5379
С	16.7617	-16.8841	-0.3081
Ν	15.4701	-17.2570	-0.1802
С	15.1767	-18.5753	-0.1750
С	16.1638	-19.5678	-0.2856
С	17.4935	-19.1715	-0.4120

\mathbf{C}	17.8069	-17.8139	-0.4280
С	13.7756	-18.9210	-0.0682
\mathbf{C}	12.6453	-18.1476	0.0171
С	11.5262	-19.0335	0.0645
С	12.0159	-20.3141	0.0074
0	13.4146	-20.2752	-0.0731
С	11.3555	-21.6017	0.0091
Ν	10.0058	-21.5825	0.0481
С	9.3435	-22.7593	0.0443
С	10.0054	-23.9969	0.0066
С	11.3981	-24.0047	-0.0314
С	12.0919	-22.7964	-0.0322
С	7.8987	-22.6831	0.0732
С	7.0380	-21.6147	0.0969
С	5.7095	-22.1388	0.1057
С	5.8098	-23.5072	0.0875
Ο	7.1619	-23.8753	0.0677
С	4.8061	-24.5496	0.0845
Ν	3.5186	-24.1421	0.0924
\mathbf{C}	2.5457	-25.0786	0.0894
С	2.8238	-26.4548	0.0796
С	4.1558	-26.8635	0.0715
\mathbf{C}	5.1679	-25.9061	0.0735
С	1.1835	-24.5903	0.0947
\mathbf{C}	0.6648	-23.3200	0.0973
\mathbf{C}	-0.7582	-23.4414	0.0991
С	-1.0541	-24.7813	0.0980
0	0.1360	-25.5213	0.0952
С	-2.3138	-25.4935	0.1003
Ν	-3.4317	-24.7358	0.0994

С	-4.6312	-25.3563	0.1023
С	-4.7569	-26.7547	0.1066
С	-3.5969	-27.5262	0.1073
С	-2.3539	-26.8969	0.1039
С	-5.7982	-24.5006	0.1001
С	-5.9352	-23.1354	0.0928
С	-7.3343	-22.8480	0.0931
С	-7.9982	-24.0488	0.1007
0	-7.0668	-25.0960	0.1051
С	-9.4078	-24.3755	0.1049
Ν	-10.2663	-23.3330	0.0985
С	-11.5921	-23.5898	0.1023
С	-12.1075	-24.8958	0.1129
С	-11.2125	-25.9634	0.1195
С	-9.8425	-25.7106	0.1154
С	-12.4712	-22.4403	0.0945
С	-12.2196	-21.0914	0.0827
С	-13.4820	-20.4231	0.0790
С	-14.4562	-21.3894	0.0887
0	-13.8558	-22.6557	0.0985
С	-15.9010	-21.3088	0.0902
Ν	-16.4344	-20.0682	0.0796
С	-17.7793	-19.9451	0.0801
С	-18.6384	-21.0557	0.0914
С	-18.0769	-22.3305	0.1022
С	-16.6908	-22.4697	0.1018
С	-18.3039	-18.5966	0.0682
С	-17.6879	-17.3705	0.0570
С	-18.7153	-16.3780	0.0485
~		1 - 0000	

C -19.9193 - 17.0361 0.0547

0	-19.6939	-18.4192	0.0670
С	-21.2853	-16.5587	0.0505
С	-22.3654	-17.4560	0.0578
С	-23.6589	-16.9392	0.0529
С	-23.8461	-15.5587	0.0410
С	-22.7135	-14.7289	0.0346
Ν	-21.4550	-15.2188	0.0393
С	-22.8449	-13.2878	0.0229
С	-21.9139	-12.2799	0.0166
С	-22.6268	-11.0421	0.0067
С	-23.9658	-11.3416	0.0071
0	-24.1317	-12.7331	0.0171
С	-25.1463	-10.5047	0.0001
С	-26.4327	-11.0678	0.0005
С	-27.5324	-10.2127	-0.0065
С	-27.3300	-8.8345	-0.0135
С	-26.0116	-8.3509	-0.0131
Ν	-24.9383	-9.1704	-0.0066
С	-25.7384	-6.9300	-0.0189
С	-24.5642	-6.2201	-0.0189
С	-24.9056	-4.8331	-0.0244
С	-26.2751	-4.7491	-0.0275
0	-26.8207	-6.0398	-0.0242
С	-27.1767	-3.6173	-0.0324
С	-28.5688	-3.8003	-0.0362
С	-29.3874	-2.6732	-0.0400
С	-28.8097	-1.4055	-0.0400
С	-27.4090	-1.3077	-0.0362
Ν	-26.6057	-2.3933	-0.0327
С	-26.7507	-0.0191	-0.0352

С	-25.4251	0.3352	-0.0321
С	-25.3662	1.7624	-0.0317
С	-26.6579	2.2249	-0.0344
0	-27.5420	1.1375	-0.0368
С	-27.2076	3.5635	-0.0343
С	-28.5954	3.7766	-0.0373
С	-29.0665	5.0879	-0.0365
С	-28.1575	6.1434	-0.0328
С	-26.7854	5.8461	-0.0300
Ν	-26.3175	4.5791	-0.0308
С	-25.7930	6.8992	-0.0258
С	-24.4211	6.8683	-0.0232
С	-23.9651	8.2220	-0.0192
С	-25.0759	9.0275	-0.0193
0	-26.2290	8.2310	-0.0235
Η	-9.1120	-26.5068	0.1202
Η	-11.5792	-26.9826	0.1278
Η	-13.1777	-25.0442	0.1155
Η	-7.8109	-21.8846	0.0883
Η	F 1179		
тт	-5.11/3	-22.4379	0.0876
п	-5.1173	-22.4379 -27.4546	0.0876 0.1044
п Н	-5.1173 -1.4284 -3.6610	-22.4379 -27.4546 -28.6075	0.0876 0.1044 0.1105
п Н Н	-5.1173 -1.4284 -3.6610 -5.7416	-22.4379 -27.4546 -28.6075 -27.1993	0.0876 0.1044 0.1105 0.1088
п Н Н	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531	0.0876 0.1044 0.1105 0.1088 0.1011
н Н Н Н	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889 1.2509	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531 -22.4189	0.0876 0.1044 0.1105 0.1088 0.1011 0.0975
H H H H H	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889 1.2509 6.2139	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531 -22.4189 -26.1766	0.0876 0.1044 0.1105 0.1088 0.1011 0.0975 0.0669
H H H H H H	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889 1.2509 6.2139 4.4027	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531 -22.4189 -26.1766 -27.9183	0.0876 0.1044 0.1105 0.1088 0.1011 0.0975 0.0669 0.0635
H H H H H H H	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889 1.2509 6.2139 4.4027 2.0065	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531 -22.4189 -26.1766 -27.9183 -27.1616	0.0876 0.1044 0.1105 0.1088 0.1011 0.0975 0.0669 0.0635 0.0776
H H H H H H H H	-5.1173 -1.4284 -3.6610 -5.7416 -1.4889 1.2509 6.2139 4.4027 2.0065 4.7837	-22.4379 -27.4546 -28.6075 -27.1993 -22.6531 -22.4189 -26.1766 -27.9183 -27.1616 -21.5928	0.0876 0.1044 0.1105 0.1088 0.1011 0.0975 0.0669 0.0635 0.0776 0.1224

Η	13.1712	-22.7544	-0.0634
Η	11.9377	-24.9436	-0.0614
Η	9.4262	-24.9092	0.0056
Η	10.4840	-18.7787	0.1299
Η	12.6385	-17.0729	0.0364
Η	18.8231	-17.4609	-0.5295
Η	18.2779	-19.9135	-0.5002
Η	15.8737	-20.6086	-0.2758
Η	15.1320	-14.4336	-0.0061
Η	16.6836	-12.1775	-0.2531
Η	22.6214	-10.7716	-1.4987
Η	22.8032	-13.2780	-1.4913
Η	20.7391	-14.6316	-1.0215
Η	-11.2391	-20.6511	0.0773
Η	-13.6691	-19.3647	0.0704
Η	-19.7076	-20.8996	0.0912
Η	-18.7133	-23.2069	0.1110
Η	-16.2112	-23.4377	0.1099
Η	-16.6237	-17.2194	0.0550
Η	-18.6014	-15.3091	0.0387
Η	-22.1719	-18.5190	0.0668
Η	-24.5128	-17.6057	0.0581
Η	-24.8303	-15.1133	0.0367
Η	-22.2218	-10.0464	0.0003
Η	-20.8494	-12.4290	0.0193
Η	-26.5414	-12.1427	0.0060
Η	-28.5375	-10.6166	-0.0066
Η	-28.1522	-8.1337	-0.0188
Η	-24.2400	-3.9889	-0.0259
Н	-23.5829	-6.6589	-0.0152

Η	19.1430	-6.3123	-0.7786
Η	18.3231	-8.9151	-0.4366
Η	23.5652	-7.5321	-2.1892
Η	24.2641	-3.2928	-2.6366
Η	-29.4047	-0.5036	-0.0426
Η	-30.4652	-2.7816	-0.0428
Η	-28.9723	-4.8026	-0.0356
Η	-24.6052	-0.3598	-0.0303
Η	-24.4916	2.3874	-0.0293
Η	-28.4769	7.1756	-0.0318
Η	-30.1316	5.2849	-0.0386
Η	-29.2630	2.9271	-0.0399
Η	-23.8285	5.9717	-0.0243
Η	-22.9506	8.5773	-0.0163
0	22.6352	-1.5003	-2.1437
С	21.8198	-2.5727	-1.7604
С	20.6213	-2.0900	-1.2966
Η	19.8083	-2.6998	-0.9455
С	20.6770	-0.6637	-1.3775
Η	19.9158	0.0436	-1.1006
С	21.9064	-0.3313	-1.8909
С	22.5299	0.9434	-2.1736
С	23.7795	1.0116	-2.8051
С	24.3429	2.2623	-3.0427
С	23.6485	3.4075	-2.6449
С	22.4103	3.2511	-2.0174
Ν	21.8500	2.0496	-1.7812
Η	24.2799	0.0962	-3.0878
Η	25.3095	2.3435	-3.5257
Η	24.0572	4.3967	-2.8051

Η	21.8550	4.1189	-1.6807
С	-25.2289	10.4665	-0.0155
С	-26.5013	11.0599	-0.0164
С	-26.5861	12.4504	-0.0121
С	-25.4178	13.2093	-0.0069
С	-24.1839	12.5392	-0.0063
Ν	-24.0899	11.1921	-0.0106
Η	-27.3802	10.4314	-0.0204
Η	-27.5535	12.9381	-0.0127
Η	-25.4354	14.2896	-0.0032
0	-22.9816	14.6726	0.0053
С	-21.6517	15.1142	0.0104
С	-20.8110	14.0297	0.0074
Η	-19.7376	14.0867	0.0103
С	-21.6280	12.8580	0.0004
Η	-21.3102	11.8312	-0.0034
С	-22.9363	13.2720	-0.0007
C	10.0116	18 2255	0.0212
U	-19.8110	10.2000	0.0313
C C	-19.8110	19.2243	0.0313
C C C	-19.8116 -20.8084 -22.1425	19.2243 18.8231	0.0313 0.0341 0.0284
C C C C	-20.8084 -22.1425 -22.4506	19.2243 19.2243 18.8231 17.4645	0.0313 0.0341 0.0284 0.0203
C C C C C	-20.8084 -22.1425 -22.4506 -21.3953	19.2243 19.2243 18.8231 17.4645 16.5383	0.0313 0.0341 0.0284 0.0203 0.0181
C C C C C N	-20.8084 -22.1425 -22.4506 -21.3953 -20.0986	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234
C C C C C N H	-20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406
C C C C C N H H	-19.8116 -20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226 -22.9345	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663 19.5622	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406 0.0303
C C C C C N H H H	-19.8116 -20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226 -22.9345 -23.4704	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663 19.5622 17.1074	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406 0.0303 0.0159
C C C C C N H H H O	-19.8116 -20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226 -22.9345 -23.4704 -18.0598	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663 19.5622 17.1074 19.9466	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406 0.0303 0.0159 0.0465
C C C C C N H H H C C	-19.8116 -20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226 -22.9345 -23.4704 -18.0598 -18.4086	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663 19.5622 17.1074 19.9466 18.5895	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406 0.0303 0.0159 0.0465 0.0369
C C C C C N H H H O C C	-19.8116 -20.8084 -22.1425 -22.4506 -21.3953 -20.0986 -20.5226 -22.9345 -23.4704 -18.0598 -18.4086 -17.2687	19.2243 19.2243 18.8231 17.4645 16.5383 16.9158 20.2663 19.5622 17.1074 19.9466 18.5895 17.8256	0.0313 0.0341 0.0284 0.0203 0.0181 0.0234 0.0406 0.0303 0.0159 0.0465 0.0369 0.0346
С	-16.1563	18.7215	0.0430
---	----------	---------	--------
Η	-15.1098	18.4753	0.0438
С	-16.6594	19.9980	0.0501
С	-16.0144	21.2933	0.0604
С	-16.7681	22.4779	0.0674
С	-16.0919	23.6958	0.0773
С	-14.6989	23.7073	0.0799
С	-14.0188	22.4789	0.0724
Ν	-14.6639	21.2925	0.0629
Η	-17.8470	22.4206	0.0652
Η	-16.6452	24.6271	0.0830
Η	-14.1326	24.6275	0.0875
0	-11.8582	23.6315	0.0855
С	-10.4993	23.2893	0.0847
С	-10.3731	21.9230	0.0736
Η	-9.4374	21.3942	0.0705
С	-11.6919	21.3740	0.0672
Η	-11.9758	20.3373	0.0582
С	-12.5727	22.4261	0.0745
С	-9.5182	24.3529	0.0944
С	-9.9115	25.7007	0.1062
С	-8.9225	26.6817	0.1148
С	-7.5816	26.3041	0.1111
С	-7.2712	24.9348	0.0989
Ν	-8.2215	23.9754	0.0911
Η	-10.9637	25.9466	0.1083
Η	-9.1940	27.7303	0.1240
Η	-6.7811	27.0298	0.1170
0	-4.8757	25.4410	0.0969
C	-3 6652	24.7350	0.0851

С	-3.9235	23.3874	0.0746
Η	-3.1715	22.6194	0.0640
С	-5.3429	23.2262	0.0795
Η	-5.9035	22.3090	0.0735
С	-5.8969	24.4814	0.0926
С	-2.4279	25.4855	0.0820
С	-2.4339	26.8895	0.0961
\mathbf{C}	-1.2126	27.5595	0.0890
\mathbf{C}	-0.0282	26.8266	0.0674
С	-0.1077	25.4247	0.0545
Ν	-1.2860	24.7646	0.0626
Η	-3.3772	27.4161	0.1115
Η	-1.1840	28.6424	0.0996
Η	0.9414	27.3032	0.0601
Ο	2.3335	25.2540	0.0082
\mathbf{C}	1.0887	24.6110	0.0293
С	1.2776	23.2519	0.0176
Η	0.4875	22.5232	0.0290
\mathbf{C}	2.6868	23.0183	-0.0123
\mathbf{C}	4.6989	24.6287	-0.0498
\mathbf{C}	5.0738	25.9819	-0.0538
С	6.4305	26.2958	-0.0886
С	7.3712	25.2692	-0.1184
С	6.9148	23.9411	-0.1114
Ν	5.6023	23.6249	-0.0775
Η	4.3088	26.7444	-0.0306
Η	6.7514	27.3305	-0.0925
Η	8.4334	25.4650	-0.1461
0	9.2186	23.1206	-0.1817
С	9.8836	21.8872	-0.1996

С	8.9610	20.8721	-0.1700
С	7.8474	22.8348	-0.1399
С	7.6659	21.4748	-0.1325
Η	9.2015	19.8244	-0.1749
Η	6.7100	20.9839	-0.1027
С	3.3042	24.2437	-0.0181
Η	3.1994	22.0737	-0.0288
С	11.3303	21.8876	-0.2417
С	12.0487	23.0938	-0.2724
С	13.4398	23.0386	-0.3106
С	14.0764	21.7999	-0.3158
С	13.2863	20.6395	-0.2829
Ν	11.9367	20.6806	-0.2477
Η	11.5116	24.0313	-0.2657
Η	14.0220	23.9518	-0.3352
Η	15.1526	21.7081	-0.3430
0	15.2955	19.2459	-0.3031
С	13.8969	19.3271	-0.2797
С	13.3682	18.0614	-0.2482
Η	12.3173	17.8360	-0.2245
С	14.4627	17.1424	-0.2492
Η	14.4228	16.0684	-0.2259
С	15.6177	17.8822	-0.2818
С	18.5869	15.8015	-0.2254
С	19.6487	16.7197	-0.2584
С	19.3516	18.0795	-0.3075
С	18.0207	18.4897	-0.3193
С	17.0162	17.5089	-0.2838
Ν	17.2922	16.1873	-0.2410
Η	20.6656	16.3552	-0.2428

Η	20.1489	18.8122	-0.3340
Η	17.7424	19.5330	-0.3521
Ο	20.1729	13.9454	-0.0998
С	20.1364	12.5470	-0.0188
С	18.8311	12.1245	-0.0352
Η	18.5180	11.0975	0.0188
С	18.0075	13.2891	-0.1253
Η	16.9340	13.3373	-0.1559
С	18.8415	14.3781	-0.1605
С	21.3917	11.8351	0.0938
С	22.6119	12.5303	0.1045
С	23.7910	11.8024	0.2445
С	23.7295	10.4171	0.3732
С	22.4701	9.7960	0.3487
Ν	21.3204	10.4909	0.2063
Η	22.6096	13.6064	0.0099
Η	24.7477	12.3101	0.2568
Η	24.6168	9.8121	0.4916
Ο	23.5173	7.6182	0.7217
С	22.3506	8.3602	0.4884
С	21.2725	7.5126	0.4534
Η	20.2546	7.8205	0.2959
С	21.7643	6.1879	0.6728
Η	21.2000	5.2742	0.7306
С	23.1243	6.2786	0.8366
С	24.1358	5.2879	1.1431
С	25.4635	5.6681	1.3930
\mathbf{C}	26.3834	4.6785	1.7351
\mathbf{C}	25.9654	3.3531	1.8174
С	24.6211	3.0521	1.5386

Ν	23.7217	4.0040	1.2046
Η	25.7396	6.7108	1.3289
Η	27.4147	4.9395	1.9399
Η	26.6414	2.5533	2.0833
Ο	25.0198	0.6891	2.0344
С	24.1404	1.6894	1.5895
С	22.9377	1.1235	1.2489
Η	22.1025	1.6525	0.8264
С	23.0504	-0.2817	1.4786
Η	22.3059	-1.0366	1.3033
\mathbf{C}	24.3147	-0.5196	1.9552
С	24.9777	-1.7408	2.3595
С	26.2897	-1.7272	2.8586
С	26.8655	-2.9365	3.2444
\mathbf{C}	26.1328	-4.1153	3.1235
\mathbf{C}	24.8280	-4.0451	2.6066
Ν	24.2602	-2.8791	2.2329
Η	26.8191	-0.7882	2.9372
Η	27.8761	-2.9598	3.6355
Η	26.5373	-5.0753	3.4111
0	24.5548	-6.4582	2.8953
С	24.0265	-5.2411	2.4430
С	22.7889	-5.4499	1.8972
Η	22.1673	-4.6959	1.4483
С	22.5100	-6.8568	2.0076
Η	21.6208	-7.3588	1.6669
С	23.5888	-7.4343	2.6111
Η	23.8378	-8.4379	2.9019
Η	25.1040	-5.6520	-2.8339

TABLE S8: xyz coordinates of the optimized structure of $${\rm B}$-(PF)_{10}$ obtained at B3LYP-D3/6-31G(d) level.}$

Ν	2.6632	-0.4103	-1.7257
С	2.7849	-1.5392	-2.4373
С	3.6153	-1.6364	-3.5732
С	4.3373	-0.5185	-3.9664
С	4.2220	0.6550	-3.2326
С	3.3684	0.6652	-2.1148
Η	3.6882	-2.5626	-4.1322
Η	4.9940	-0.5641	-4.8313
Н	4.8001	1.5335	-3.4953
С	3.2401	1.8941	-1.3381
0	2.6088	1.8473	-0.1383
С	2.6589	3.0896	0.4122
С	3.3131	3.9479	-0.4419
С	3.6890	3.1776	-1.5715
Η	4.2289	3.5226	-2.4419
Η	3.5250	4.9921	-0.2631
С	2.1038	3.2576	1.7502
С	1.9538	4.5316	2.3316
С	1.4793	4.6041	3.6381
С	1.1593	3.4336	4.3240
С	1.3180	2.2104	3.6505
Ν	1.7841	2.1341	2.3963
Η	2.2053	5.4286	1.7751
Η	1.3578	5.5699	4.1219
Η	0.7935	3.4620	5.3453
С	0.9942	-1.2666	4.2744
С	0.3193	-0.8770	5.4108

С	0.3266	0.5455	5.4125
С	0.9965	0.9309	4.2720
Ο	1.4023	-0.1694	3.5931
Η	-0.1282	-1.5288	6.1474
Η	-0.1291	1.2011	6.1411
\mathbf{C}	1.3619	-2.5519	3.6864
Ν	2.2980	-2.5006	2.7309
\mathbf{C}	0.7564	-3.7528	4.0916
\mathbf{C}	2.6550	-3.6305	2.1123
\mathbf{C}	1.1386	-4.9271	3.4489
Η	-0.0180	-3.7529	4.8516
С	2.0962	-4.8795	2.4402
\mathbf{C}	3.6709	-3.5003	1.0706
Η	0.6743	-5.8720	3.7158
Η	2.3979	-5.7799	1.9148
Ο	4.2393	-2.2767	0.9063
\mathbf{C}	4.2164	-4.3848	0.1665
\mathbf{C}	5.1454	-2.3625	-0.1014
\mathbf{C}	5.1653	-3.6503	-0.5918
Η	3.9494	-5.4245	0.0444
\mathbf{C}	5.8844	-1.1537	-0.4522
Η	5.7824	-4.0231	-1.3972
\mathbf{C}	6.7498	-1.1415	-1.5611
Ν	5.6985	-0.0798	0.3303
\mathbf{C}	7.4247	0.0382	-1.8567
Η	6.8698	-2.0234	-2.1810
\mathbf{C}	6.3542	1.0520	0.0401
С	7.2287	1.1600	-1.0578
Η	8.0942	0.0859	-2.7118
\mathbf{C}	6.1362	2.1895	0.9310

Η	7.7400 2.0930 -1.2713	3
С	6.6677 3.4557 0.9829)
0	5.2477 2.0313 1.9563	5
С	6.0680 4.1063 2.1037	7
Η	7.4007 3.8724 0.3065	,)
С	5.2168 3.1914 2.6543	5
Η	6.2471 5.1139 2.4526	;
Η	4.5348 3.2141 3.4903	5
С	2.0329 -2.7218 -2.0223	3
0	1.1641 -2.6571 -0.973'	7
С	2.0459 -4.0039 -2.527	5
С	0.6209 -3.8959 -0.8038	3
С	1.1435 -4.7574 -1.7442	2
Η	2.6433 -4.3667 -3.351	1
С	-0.3648 -4.1377 0.2485	,)
Η	0.8974 -5.8017 -1.8698	3
Ν	-0.7770 -3.1094 1.0024	Ŀ
С	-0.8431 -5.4524 0.4293	5
С	-1.6890 -3.3492 1.9598	3
С	-1.7816 -5.6882 1.4238	3
Η	-0.4846 -6.2657 -0.1918	5
С	-2.2227 -4.6271 2.2041	_
Η	-2.1774 -6.6883 1.5803	5
Η	-2.9834 -4.7728 2.9625	ý
С	-2.1355 -2.2322 2.7869)
0	-1.8432 -0.9675 2.3933	5
С	-2.8544 -2.1926 3.9638	3
С	-2.3744 -0.1083 3.3045	,)
С	-3.0059 -0.8224 4.2971	_
Η	-3.2234 -3.0423 4.5208	3

С	-2.1943 1.3200 3.0659
Η	-3.5287 -0.4106 5.1485
Ν	-1.6937 1.6550 1.8755
С	-2.5247 2.2781 4.0438
\mathbf{C}	-1.4934 2.9489 1.5908
\mathbf{C}	-2.3106 3.6197 3.7432
Η	-2.9192 1.9752 5.0085
\mathbf{C}	-0.9443 3.2182 0.2681
\mathbf{C}	-1.7876 3.9757 2.5025
Η	-2.5496 4.3878 4.4745
0	-0.8328 2.1479 -0.5547
\mathbf{C}	-0.4540 4.3383 -0.3679
Η	-1.6176 5.0147 2.2423
\mathbf{C}	-0.2618 2.5557 -1.7131
\mathbf{C}	-0.0060 3.9082 -1.6467
Η	-0.3990 5.3367 0.0429
\mathbf{C}	-0.0530 1.5240 -2.7240
Η	0.4406 4.5155 -2.4205
Ν	-0.6825 0.3633 -2.5097
\mathbf{C}	0.7755 1.7424 -3.8382
\mathbf{C}	-0.5015 -0.6407 -3.3731
С	0.9678 0.6893 -4.7270
Η	1.2856 2.6908 -3.9708
\mathbf{C}	-1.2370 -1.8723 -3.0955
\mathbf{C}	0.3301 -0.5267 -4.5013
Η	1.6221 0.8109 -5.5855
\mathbf{C}	-1.2601 -3.1157 -3.6899
0	-2.1229 -1.8464 -2.0691
Η	0.4615 -1.3607 -5.1822
С	-2.2152 -3.8861 -2.9737

Н -0.6537 -3.4399 -4.5231 C -2.7188 -3.0636 -1.9886 H -2.4936 -4.9145 -3.1576 C -3.7103 -3.2485 -0.9329 C -4.2625 -4.5126 -0.6548 N -4.0545 -2.1508 -0.2486 C -5.1885 -4.6126 0.3795 Н -3.9566 -5.3887 -1.2172 C -4.9516 -2.2527 0.7395 C -5.5461 -3.4753 1.0996 Н -5.6297 -5.5753 0.6250 C -5.3014 -1.0011 1.4073 Н -6.2773 -3.5235 1.9006 O -4.8820 0.1373 0.8005 C -5.9960 -0.6804 2.5528 C -5.3007 1.1944 1.5389 C -5.9914 0.7390 2.6411 Н -6.4359 -1.3768 3.2528 C -4.9781 2.5177 1.0123 Н -6.4481 1.3469 3.4098 N -4.4832 2.5421 -0.2328 C -5.1831 3.6839 1.7680 C -4.1555 3.7181 -0.7790 $C \ -4.8414 \ 4.9055 \ 1.1926$ Н -5.5705 3.6293 2.7800 C -4.3143 4.9385 -0.0944 C -3.6279 3.6739 -2.1396 Н -4.9773 5.8282 1.7507 Н -4.0398 5.8787 -0.5620 O -3.5985 2.4634 -2.7583

- C -3.1207 4.6343 -2.9864
 C -3.0720 2.6348 -3.9978
 C -2.7595 3.9644 -4.1842
 H -3.0076 5.6870 -2.7694
 C -2.9548 1.4590 -4.8551
 H -2.3342 4.4062 -5.0744
 N -3.5767 0.3366 -4.4484
 C -2.2177 1.5220 -6.0515
 C -3.4678 -0.7492 -5.2138
 C -2.1298 0.3827 -6.8429
 H -1.7068 2.4363 -6.3354
 C -2.7635 -0.7861 -6.4200
 H -3.9626 -1.6426 -4.8368
 H -1.5607 0.4028 -7.7689
- Н -2.7094 -1.7031 -6.9990

TABLE S9: xyz coordinates of the optimized structure of $A-(PP)_{10}$ obtained at B3LYP-D3/6-31G(d) level.

С	13.3387	0.5161	-0.6484
С	14.4477	-0.3176	-0.5309
С	15.1671	1.8225	-0.3796
С	13.7860	1.8475	-0.5535
С	14.5169	-1.7730	-0.5615
Ν	13.3333	-2.4102	-0.5670
С	13.3079	-3.7537	-0.5972
С	14.4886	-4.5230	-0.6240
С	15.7118	-3.8614	-0.6162
С	15.7410	-2.4713	-0.5862
Η	14.4568	-5.6070	-0.6784
Η	16.6394	-4.4270	-0.6467
Η	16.6914	-1.9469	-0.6099
Η	12.3293	0.1634	-0.7986
Η	13.1997	2.7521	-0.6162
С	16.3381	5.2133	0.1120
С	17.7440	5.1100	0.1105
С	18.3174	3.8610	-0.1023
С	17.4987	2.7517	-0.2864
С	16.1018	2.9308	-0.2303
Ν	15.5445	4.1398	-0.0455
Η	18.3736	5.9761	0.2909
Η	19.3986	3.7524	-0.1247
Η	17.9356	1.7785	-0.4892
С	15.3771	8.7232	0.4776
С	14.1290	8.1266	0.6327
С	14.2986	6.7334	0.5195

С	15.6499	6.4842	0.2961
Η	13.2168	8.6724	0.8228
Η	13.5466	5.9629	0.6034
С	15.7384	10.1353	0.5089
С	17.0781	10.5694	0.5463
С	17.3303	11.9374	0.5493
С	16.2663	12.8325	0.5332
С	14.9530	12.3195	0.5311
Ν	14.7076	10.9978	0.5103
Η	17.9007	9.8624	0.5946
Η	18.3532	12.3047	0.5664
Η	16.4566	13.9013	0.5105
С	13.7756	13.1789	0.5417
С	12.4367	12.8418	0.3953
С	11.6754	14.0335	0.4698
С	12.5615	15.0769	0.6644
Η	12.0791	11.8346	0.2415
Η	10.6008	14.1239	0.3883
Η	12.3944	16.1382	0.7811
Ν	15.5519	0.4976	-0.3870
Η	16.4709	0.1731	-0.1317
Ν	16.2915	7.7063	0.2939
Η	17.2437	7.8470	-0.0044
Ν	13.8274	14.5534	0.6981
Η	14.6617	15.0860	0.8864
С	11.9815	-4.3579	-0.6034
С	10.7352	-3.7508	-0.7328
Ν	11.7596	-5.7151	-0.4895
С	9.7547	-4.7593	-0.6762
Η	10.5894	-2.6891	-0.8651

С	10.4056	-5.9792	-0.5130
Η	12.4645	-6.3878	-0.2332
Η	8.6834	-4.6506	-0.7571
С	9.8444	-7.3192	-0.3986
С	10.6440	-8.4789	-0.4466
Ν	8.5095	-7.3792	-0.2532
С	10.0274	-9.7166	-0.2974
Η	11.7150	-8.4200	-0.6159
С	7.9141	-8.5779	-0.1289
С	8.6487	-9.7808	-0.1256
Η	10.6192	-10.6281	-0.3150
С	6.4640	-8.5487	0.0132
Η	8.1618	-10.7394	0.0261
С	5.6174	-7.4615	0.2119
Ν	5.6719	-9.6785	-0.0151
С	4.2980	-7.9481	0.2818
Η	5.9554	-6.4405	0.3079
С	4.3439	-9.3307	0.1268
Η	5.9909	-10.5886	-0.3073
Η	3.3899	-7.3866	0.4441
С	3.2548	-10.2990	0.1257
С	3.4819	-11.6885	0.1928
Ν	2.0161	-9.7805	0.0685
С	2.3846	-12.5424	0.1569
Η	4.4852	-12.0916	0.2925
С	0.9568	-10.6078	0.0542
С	1.1023	-12.0096	0.0765
Η	2.5282	-13.6192	0.1915
Η	0.2408	-12.6673	0.0112
С	-0.3475	-9.9599	0.0012

С	-0.6614	-8.6242	-0.2340
Ν	-1.5406	-10.6328	0.1695
С	-2.0626	-8.4948	-0.1858
Η	0.0710	-7.8561	-0.4333
С	-2.5991	-9.7517	0.0795
Η	-1.6153	-11.5768	0.5141
Η	-2.6536	-7.6042	-0.3392
С	-3.9932	-10.1484	0.2294
С	-4.3913	-11.4988	0.2975
Ν	-4.8802	-9.1401	0.2883
С	-5.7412	-11.7847	0.4716
Η	-3.6714	-12.3055	0.1979
С	-6.1864	-9.4202	0.4362
С	-6.6590	-10.7429	0.5536
Η	-6.0768	-12.8160	0.5433
С	-7.0769	-8.2674	0.4778
Η	-7.7103	-10.9535	0.7250
С	-6.7668	-6.9135	0.5723
Ν	-8.4530	-8.3659	0.4434
С	-7.9761	-6.1922	0.5735
Η	-5.7616	-6.5263	0.6477
С	-9.0201	-7.1083	0.4800
Η	-8.9557	-9.2080	0.2115
Η	-8.1128	-5.1238	0.6502
С	-10.4578	-6.8725	0.4443
С	-11.3965	-7.9161	0.5725
Ν	-10.8329	-5.5909	0.2918
С	-12.7497	-7.6036	0.4996
Η	-11.0813	-8.9405	0.7466
\mathbf{C}	-12.1418	-5.2895	0.2399

С	-13.1406	-6.2807	0.3220
Η	-13.4973	-8.3883	0.5812
С	-12.4555	-3.8755	0.0788
Η	-14.1935	-6.0316	0.2302
С	-11.6059	-2.8092	-0.2043
Ν	-13.7325	-3.3615	0.1690
С	-12.3869	-1.6403	-0.2698
Η	-10.5413	-2.9073	-0.3564
С	-13.7109	-1.9956	-0.0246
Η	-14.5324	-3.8802	0.4945
Η	-12.0598	-0.6332	-0.4812
С	-14.8997	-1.1536	0.0179
Ν	-14.6778	0.1677	-0.0929
С	-16.1982	-1.6827	0.1613
С	-15.7201	1.0161	-0.0693
С	-17.2747	-0.8028	0.1866
Η	-16.3704	-2.7528	0.2273
С	-17.0480	0.5642	0.0687
С	-15.3844	2.4282	-0.2015
Η	-18.2883	-1.1821	0.2858
Η	-17.8853	1.2553	0.0572
С	-14.1571	3.0204	-0.4878
Ν	-16.3042	3.4485	-0.0712
С	-14.3445	4.4154	-0.5102
Η	-13.2463	2.4694	-0.6686
С	-15.6859	4.6706	-0.2386
Η	-17.2416	3.3298	0.2785
H H	-17.2416 -13.6114	3.3298 5.1816	0.2785 -0.7142
H H C	-17.2416 -13.6114 -16.3856	3.32985.18165.9460	0.2785 -0.7142 -0.1525

Ν	-15.6033	7.0391	-0.1605
\mathbf{C}	-18.3728	7.2914	0.0290
Η	-18.4145	5.1454	-0.1237
\mathbf{C}	-16.1702	8.2549	-0.0766
\mathbf{C}	-17.5647	8.4233	0.0410
Η	-19.4527	7.3897	0.1032
\mathbf{C}	-15.2480	9.3829	-0.1036
Η	-18.0062	9.4081	0.1607
\mathbf{C}	-13.8596	9.3923	-0.0023
Ν	-15.6540	10.6964	-0.2231
С	-13.4297	10.7306	-0.0805
Η	-13.2561	8.5066	0.1299
С	-14.5572	11.5340	-0.2309
Η	-16.5895	10.9798	-0.4677
Η	-12.4201	11.1093	-0.0246
\mathbf{C}	-14.6471	12.9818	-0.3618
\mathbf{C}	-15.8754	13.6712	-0.3453
Ν	-13.4701	13.6322	-0.4955
\mathbf{C}	-15.8795	15.0545	-0.4898
Η	-16.8127	13.1409	-0.2015
С	-13.4955	14.9585	-0.6240
С	-14.6649	15.7240	-0.6365
Η	-16.8184	15.6018	-0.4804
Η	-12.5243	15.4412	-0.7256
Н	-14.6198	16.8025	-0.7510

TABLE S10: xyz coordinates of the optimized structure of $A-(PP)_{16}$ obtained at B3LYP-D3/6-31G(d) level.

С	13.8300	-2.3220	0.9262
С	12.7507	-1.8845	0.1693
С	12.7151	-0.4713	0.2393
С	13.7685	-0.0732	1.0429
С	14.2933	-3.6772	1.1724
С	15.5275	-3.9542	1.8020
С	15.8871	-5.2829	2.0055
С	15.0324	-6.3016	1.5896
С	13.8221	-5.9426	0.9591
Ν	13.4731	-4.6604	0.7622
С	12.8692	-6.9339	0.4819
С	11.7015	-6.7511	-0.2527
С	11.1135	-8.0156	-0.4496
С	11.9299	-8.9623	0.1602
С	11.7728	-10.4060	0.2596
С	12.8554	-11.2521	0.5773
С	12.6143	-12.6151	0.7086
С	11.3288	-13.1082	0.5044
С	10.3102	-12.2035	0.1440
Ν	10.5360	-10.8815	0.0373
С	8.9419	-12.6271	-0.1228
С	7.1962	-14.0279	-0.4569
С	6.7217	-12.7211	-0.5531
С	7.8069	-11.8501	-0.3463
С	6.4727	-15.2850	-0.5982
Ν	5.1726	-15.1711	-0.9217
С	4.4304	-16.2815	-1.0706

С	4.9695	-17.5713 -0.8903
С	6.3158	-17.6869 -0.5620
С	7.0877	-16.5397 -0.4128
С	3.0339	-16.0645 -1.4264
С	0.9299	-16.5678 -2.0898
С	0.9924	-15.1941 -1.8735
С	2.3018	-14.8810 -1.4605
С	-0.1914	-17.3881 -2.5296
Ν	-1.2678	-16.7155 -2.9719
С	-2.3372	-17.4014 -3.4112
С	-2.3605	-18.8105 -3.4416
С	-1.2542	-19.5034 -2.9619
С	-0.1542	-18.7966 -2.4883
С	-3.4621	-16.5934 -3.8644
С	-5.5517	-16.1138 -4.5883
С	-4.8439	-14.9180 -4.5040
С	-3.5433	-15.2165 -4.0546
С	-6.9271	-16.3507 -5.0078
Ν	-7.6907	-15.2535 -5.1507
С	-8.9734	-15.3912 -5.5283
С	-9.5547	-16.6544 -5.7593
С	-8.7562	-17.7858 -5.6309
С	-7.4227	-17.6456 -5.2619
С	-9.7280	-14.1526 -5.6708
С	-11.4397	-12.7896 -6.2479
С	-10.4643	-12.0125 -5.6290
С	-9.3983	-12.8606 -5.2713
С	-12.7275	-12.3943 -6.8038
Ν	-12.9533	-11.0707 -6.8701
С	-14.1138	-10.6270 -7.3830

С	-15.0978	-11.5065	-7.8786
С	-14.8705	-12.8754	-7.7883
С	-13.6808	-13.3381	-7.2367
С	-14.2870	-9.1801	-7.4004
С	-15.3453	-7.1937	-7.6350
С	-14.0268	-6.9347	-7.2718
С	-13.3677	-8.1712	-7.1268
С	-16.4363	-6.2663	-7.9063
Ν	-16.2164	-4.9860	-7.5607
С	-17.1836	-4.0752	-7.7666
С	-18.4339	-4.4228	-8.3171
С	-18.6491	-5.7436	-8.6952
С	-17.6432	-6.6843	-8.5029
С	-16.8629	-2.7099	-7.3706
С	-17.1020	-0.4685	-7.1700
С	-15.9295	-0.8334	-6.5142
С	-15.7806	-2.2284	-6.6391
С	-17.7078	0.8474	-7.3287
Ν	-16.9503	1.8899	-6.9458
С	-17.4377	3.1364	-7.0706
С	-18.7133	3.3904	-7.6141
С	-19.5029	2.3087	-7.9886
С	-19.0109	1.0167	-7.8393
С	-16.5609	4.2088	-6.6178
С	-15.9315	6.3022	-6.0326
С	-14.8269	5.4676	-5.8869
С	-15.2187	4.1646	-6.2514
С	-16.0548	7.7334	-5.7871
Ν	-15.0192	8.3091	-5.1522
С	-15.0651	9.6244	-4.8786

С	-16.1780	10.4204	-5.2178
С	-17.2380	9.8264	-5.8942
С	-17.1840	8.4705	-6.1979
Η	-3.2104	-19.3532	-3.8441
Η	-1.2498	-20.5902	-2.9567
Η	0.7001	-19.3265	-2.0780
Η	-2.7232	-14.5333	-3.8915
Η	-5.2516	-13.9529	-4.7660
Η	-10.6066	-16.7535	-6.0093
Η	-9.1714	-18.7728	-5.8175
Η	-6.7804	-18.5185	-5.1952
Η	-8.4833	-12.5991	-4.7606
Η	-10.5551	-10.9503	-5.4569
Η	-16.0075	-11.1338	-8.3397
Η	-15.6174	-13.5790	-8.1468
Η	-13.5084	-14.4049	-7.1310
Η	-12.3340	-8.3469	-6.8688
Η	-13.6145	-5.9438	-7.1516
Η	-19.2254	-3.6878	-8.4285
Η	-19.5968	-6.0384	-9.1383
Η	-17.7848	-7.7101	-8.8293
Η	-14.9952	-2.8516	-6.2377
Η	-15.2845	-0.1399	-5.9952
Η	-19.0725	4.4045	-7.7604
Η	-20.4975	2.4720	-8.3953
Η	-19.6326	0.1637	-8.0938
Η	-14.6133	3.2706	-6.2745
Η	-13.8521	5.8035	-5.5660
Η	-16.2259	11.4701	-4.9448
Η	-18.1026	10.4180	-6.1836

Η	-17.9890	8.0040	-6.7577
Η	0.1558	-14.5225	-1.9957
Η	2.7009	-13.9136	-1.1941
Η	8.1361	-16.6241	-0.1432
Η	6.7600	-18.6676	-0.4126
Η	4.3507	-18.4595	-0.9744
Η	5.6912	-12.4643	-0.7490
Η	7.8030	-10.7701	-0.3427
Η	11.1268	-14.1677	0.6321
Η	13.4247	-13.2926	0.9651
Η	13.8564	-10.8510	0.6977
Η	11.3478	-5.7919	-0.5999
Η	10.2073	-8.2494	-0.9886
Η	15.3133	-7.3410	1.7195
Η	16.8389	-5.5253	2.4725
Η	16.1969	-3.1539	2.0979
Η	14.0638	0.9070	1.3865
Η	12.0035	0.1865	-0.2405
Η	12.0858	-2.5391	-0.3745
Ν	-16.9699	5.5214	-6.4977
Η	-17.9318	5.8202	-6.5311
Ν	-17.6642	-1.6264	-7.6673
Η	-18.4275	-1.6489	-8.3247
Ν	-15.4776	-8.5640	-7.7283
Η	-16.3612	-9.0427	-7.8034
Ν	-10.9813	-14.0912	-6.2449
Η	-11.3998	-14.8419	-6.7711
Ν	-4.6882	-17.1223	-4.2126
Η	-4.9713	-18.0715	-4.0278
Ν	2.1756	-17.0815	-1.7922

Η	2.4697	-18.0188	-2.0170
Ν	8.5461	-13.9465	-0.1853
Η	9.1713	-14.7346	-0.1377
Ν	13.0114	-8.2911	0.6953
Η	13.5781	-8.6795	1.4354
Ν	14.4534	-1.1927	1.4325
Η	15.1336	-1.1981	2.1786
С	-12.5082	11.7317	-3.3305
С	-11.9477	10.4796	-3.0909
С	-12.8115	9.5082	-3.6315
С	-13.8972	10.1701	-4.1989
Ν	-13.7013	11.5196	-3.9901
Η	-14.2548	12.2462	-4.4151
Η	-11.0170	10.3230	-2.5664
Η	-12.6979	8.4345	-3.6153
С	-12.0112	13.0541	-2.9723
С	-12.7762	14.2230	-3.1598
С	-12.2259	15.4442	-2.7867
С	-10.9479	15.4829	-2.2403
С	-10.2450	14.2707	-2.0862
Ν	-10.7743	13.0888	-2.4466
Η	-13.7849	14.1820	-3.5596
Η	-12.7966	16.3611	-2.9086
Η	-10.5238	16.4283	-1.9160
С	-8.9021	14.2166	-1.5223
С	-8.1400	13.1123	-1.1499
Ν	-8.1510	15.3386	-1.2394
С	-6.9106	13.5836	-0.6516
Η	-8.4751	12.0891	-1.2323
\mathbf{C}	-6.9250	14.9743	-0.7225

Η	-8.3928	16.2728	-1.5284
Η	-6.0850	13.0053	-0.2644
С	-5.8994	15.9335	-0.3322
С	-6.1276	17.3245	-0.3357
Ν	-4.7185	15.4061	0.0352
С	-5.0935	18.1684	0.0542
Η	-7.0929	17.7398	-0.6088
С	-3.7209	16.2243	0.4127
С	-3.8719	17.6255	0.4372
Η	-5.2433	19.2446	0.0721
С	-2.4780	15.5690	0.7998
Η	-3.0699	18.2753	0.7739
С	-2.2106	14.2153	0.9865
Ν	-1.3120	16.2527	1.0777
С	-0.8599	14.0891	1.3637
Η	-2.9432	13.4310	0.8671
С	-0.3072	15.3663	1.4066
Η	-1.1644	17.2299	0.8815
Η	-0.3178	13.1862	1.6025
С	1.0484	15.7802	1.7453
С	1.3946	17.1323	1.9439
Ν	1.9473	14.7884	1.8688
С	2.7186	17.4428	2.2347
Η	0.6486	17.9197	1.8930
С	3.2217	15.0903	2.1714
С	3.6554	16.4206	2.3420
Η	3.0193	18.4776	2.3768
С	4.1265	13.9553	2.3020
Η	4.6987	16.6538	2.5324
С	3.9243	12.6176	1.9739

Ν	5.4120	14.0620	2.7921
С	5.1008	11.9121	2.2920
Η	3.0153	12.2316	1.5367
С	6.0168	12.8217	2.8135
Η	5.7741	14.8780	3.2596
Η	5.3025	10.8601	2.1551
С	7.3741	12.5989	3.2950
Ν	7.7436	11.3126	3.4208
С	8.2483	13.6614	3.6009
С	8.9766	11.0236	3.8714
С	9.5159	13.3590	4.0868
Η	7.9562	14.6954	3.4449
С	9.8935	12.0291	4.2386
С	9.2972	9.6050	3.9647
Η	10.2070	14.1568	4.3459
Η	10.8680	11.7825	4.6493
С	8.4649	8.4983	3.8214
Ν	10.5610	9.1272	4.2460
С	9.2485	7.3419	3.9990
Η	7.4045	8.5592	3.6258
С	10.5562	7.7469	4.2514
Η	11.3959	9.6914	4.2370
Η	8.9280	6.3110	3.9720
С	11.7428	6.9408	4.5062
Ν	11.6112	5.6226	4.2774
С	12.9483	7.5019	4.9745
С	12.6641	4.8122	4.4797
С	14.0417	6.6634	5.1630
Η	13.0250	8.5599	5.2067
С	13.9149	5.3022	4.9064

С	12.4320	3.3982	4.2144
Η	14.9891	7.0692	5.5084
Η	14.7713	4.6433	5.0141
С	11.3508	2.7795	3.5932
Ν	13.3326	2.4045	4.5455
С	11.5964	1.3924	3.5761
Η	10.5014	3.3089	3.1877
С	12.8258	1.1703	4.1875
Η	14.1085	2.5330	5.1764
Η	10.9909	0.6122	3.1396
С	13.5435	-0.0808	4.3900
Ν	12.8211	-1.2007	4.2251
С	14.9198	-0.1127	4.6997
С	13.4177	-2.3977	4.3617
С	15.5276	-1.3536	4.8806
Η	15.5004	0.8015	4.7788
С	14.7795	-2.5150	4.7179
\mathbf{C}	12.5724	-3.5579	4.1337
Η	16.5813	-1.4139	5.1424
Η	15.2349	-3.4866	4.8739
С	11.1938	-3.6188	3.9515
Ν	13.0487	-4.8556	4.1115
\mathbf{C}	10.8400	-4.9711	3.7910
Η	10.5426	-2.7573	3.9599
С	12.0048	-5.7287	3.8781
Η	14.0133	-5.0878	3.9204
Η	9.8546	-5.3888	3.6471
С	12.1652	-7.1734	3.8139
Ν	11.0761	-7.8689	3.4203
\mathbf{C}	13.3706	-7.8176	4.1598

- C 11.1643 9.1958 3.3503
- C 13.4410 -9.2067 4.0852
- Н 14.2253 -7.2447 4.5050
- C 12.3180 -9.9222 3.6678
- Н 14.3585 -9.7223 4.3588
- Н 12.3285 -11.0031 3.5799
- Н 10.2714 -9.7132 3.0048

TABLE S11: xyz coordinates of the optimized structure of $B-(PP)_{10}$ obtained at B3LYP-D3/6-31G(d) level.

172			
Ν	-4.1940	1.2354	1.4087
С	-4.5709	2.5178	1.2558
С	-5.1480	3.2514	2.3062
С	-5.3543	2.6086	3.5240
С	-4.9837	1.2750	3.6795
С	-4.3917	0.6188	2.5889
Η	-5.4406	4.2854	2.1570
Η	-5.8020	3.1484	4.3545
Η	-5.1151	0.7591	4.6243
С	-3.9322	-0.7625	2.6488
С	-2.8293	-2.5578	1.8464
С	-3.4232	-2.9337	3.0536
С	-4.1095	-1.8076	3.5603
Η	-4.6763	-1.7548	4.4800
Η	-3.3463	-3.9067	3.5183
Ν	-3.1584	-1.2512	1.6354
Η	-2.8790	-0.7209	0.8241
С	-2.0316	-3.2582	0.8485
Ν	-1.5581	-2.4901	-0.1502
С	-1.8030	-4.6408	0.8958
С	-0.8565	-3.0586	-1.1479
С	-1.0770	-5.2247	-0.1390
Η	-2.2019	-5.2346	1.7105
С	-0.5996	-4.4386	-1.1828
С	-0.3739	-2.1424	-2.1712
Η	-0.8838	-6.2939	-0.1317
Н	-0.0214	-4.8672	-1.9937

С	0.2609	-2.3108	-3.4037
Ν	-0.5325	-0.7979	-1.9898
С	0.4613	-1.0286	-3.9596
Η	0.5442	-3.2555	-3.8448
С	-0.0405	-0.0932	-3.0527
Η	-0.9907	-0.3812	-1.1938
Η	0.9528	-0.8000	-4.8947
С	-0.0973	1.3601	-3.0172
Ν	-0.4564	1.8786	-1.8280
С	0.1799	2.1723	-4.1256
С	-0.5648	3.2105	-1.6865
С	0.0601	3.5523	-3.9765
Η	0.4633	1.7291	-5.0730
С	-0.3232	4.0921	-2.7523
~		0.0404	0.0400
С	-0.9213	3.6494	-0.3460
С Н	-0.9213 0.2667	3.64944.2074	-0.3460 -4.8185
С Н Н	-0.9213 0.2667 -0.4047	3.64944.20745.1632	-0.3460 -4.8185 -2.6049
С Н Н С	-0.9213 0.2667 -0.4047 -1.2806	3.64944.20745.16324.8738	-0.3460 -4.8185 -2.6049 0.2201
C H H C N	-0.9213 0.2667 -0.4047 -1.2806 -0.9527	 3.6494 4.2074 5.1632 4.8738 2.7248 	-0.3460 -4.8185 -2.6049 0.2201 0.6592
C H C N C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400	 3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895
C H C N C H	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095
C H H C N C H C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421
C H H C N C H C H	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415
C H H C N C H C H H H	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192
C H H C N C H C H H C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424 -1.4024	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883 2.4616	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192 3.0325
C H H C N C H C H H C N N N	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424 -1.4024 -0.9394	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883 2.4616 1.2011	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192 3.0325 2.8966
C H H C N C H C H C H C N C N C N C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424 -1.4024 -0.9394 -1.9389	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883 2.4616 1.2011 2.9389	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192 3.0325 2.8966 4.2376
C H H C N C H C H C H C N C C C C C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424 -1.4024 -0.9394 -1.9389 -0.9903	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883 2.4616 1.2011 2.9389 0.3702	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192 3.0325 2.8966 4.2376 3.9519
C H H C N C H C H C H C N C C C C C	-0.9213 0.2667 -0.4047 -1.2806 -0.9527 -1.5400 -1.3630 -1.3226 -0.7361 -1.8424 -1.4024 -0.9394 -1.9389 -0.9903 -1.9961	3.6494 4.2074 5.1632 4.8738 2.7248 4.6498 5.8122 3.2919 1.7465 5.3883 2.4616 1.2011 2.9389 0.3702 2.0721	-0.3460 -4.8185 -2.6049 0.2201 0.6592 1.5895 -0.3095 1.8421 0.5415 2.3192 3.0325 2.8966 4.2376 3.9519 5.3240

С	-1.5169	0.7741	5.1941
С	-0.4607	-0.9721	3.7651
Η	-2.4129	2.4082	6.2701
Η	-1.5380	0.0840	6.0301
С	-0.5277	-2.0976	4.5872
Ν	0.2468	-1.3335	2.6478
С	0.1564	-3.1399	3.9397
Η	-1.0461	-2.1569	5.5336
С	0.6437	-2.6409	2.7283
Η	0.4794	-0.7114	1.8878
Η	0.2888	-4.1467	4.3099
С	1.4356	-3.2927	1.6945
Ν	1.8628	-2.5478	0.6542
С	1.7295	-4.6642	1.8089
С	2.5980	-3.1482	-0.3051
С	2.4816	-5.2736	0.8145
Η	1.3606	-5.2339	2.6537
С	2.9243	-4.5156	-0.2606
С	3.0739	-2.3322	-1.4134
Η	2.7219	-6.3318	0.8773
Η	3.5255	-4.9609	-1.0444
С	3.8029	-2.6878	-2.5511
Ν	2.8642	-0.9809	-1.4793
С	4.0112	-1.5219	-3.3084
Η	4.1556	-3.6801	-2.7938
С	3.4139	-0.4637	-2.6246
Η	2.3184	-0.4593	-0.8093
Η	4.5811	-1.4371	-4.2226
С	3.3784	0.9555	-2.9353
Ν	3.0702	1.7942	-1.9289

С	3.6882	1.4232	-4.2264
С	3.0586	3.1252	-2.1622
С	3.7044	2.7945	-4.4516
Η	3.9146	0.7205	-5.0204
С	3.3889	3.6677	-3.4139
С	2.7031	3.9576	-1.0237
Η	3.9551	3.1835	-5.4351
Η	3.3920	4.7425	-3.5599
С	2.4926	5.3288	-0.8468
Ν	2.5050	3.3698	0.1909
С	2.1567	5.5366	0.5099
Η	2.5691	6.0856	-1.6157
С	2.1760	4.2919	1.1422
Η	2.5599	2.3770	0.3636
Η	1.9353	6.4827	0.9843
С	1.9685	3.8217	2.5067
Ν	2.3462	2.5480	2.7054
С	1.4111	4.5988	3.5327
С	2.1936	1.9821	3.9154
С	1.2396	4.0059	4.7826
Η	1.0929	5.6173	3.3395
С	1.6319	2.6856	4.9925
С	2.6923	0.6179	4.0059
Η	0.7947	4.5732	5.5955
Η	1.5104	2.2077	5.9583
С	2.5989	-0.3973	4.9593
Ν	3.4314	0.1198	2.9672
С	3.3023	-1.5150	4.4601
Η	2.0452	-0.3447	5.8860
С	3.8258	-1.1629	3.2130

Η	3.7018	0.6481	2.1512
Η	3.4095	-2.4754	4.9440
С	4.6796	-1.8458	2.2495
Ν	5.1026	-1.0948	1.2115
С	5.0531	-3.1882	2.4062
С	5.9322	-1.6394	0.3022
С	5.8913	-3.7539	1.4489
Η	4.6769	-3.7688	3.2410
С	6.3458	-2.9823	0.3860
С	6.3914	-0.7673	-0.7698
Η	6.1856	-4.7970	1.5307
Η	6.9953	-3.4022	-0.3743
С	7.3523	-0.9383	-1.7615
Ν	5.8741	0.4986	-0.9297
С	7.3926	0.2499	-2.5328
Η	7.9682	-1.8167	-1.8982
С	6.4558	1.1179	-1.9970
Η	5.0793	0.8392	-0.4085
Η	8.0371	0.4540	-3.3773
Η	6.1476	2.1078	-2.3003
С	-4.3793	3.0612	-0.0823
Ν	-3.9849	2.2228	-1.0857
С	-4.5360	4.3271	-0.6519
С	-3.8814	2.8861	-2.2734
Η	-3.8035	1.2372	-0.9665
С	-4.2170	4.2196	-2.0231
Η	-4.8260	5.2255	-0.1248
С	-3.5146	2.1409	-3.4704
Η	-4.2397	5.0146	-2.7560
Ν	-3.4794	0.8029	-3.3201

C -3.2161 2.7608 -4.6931 C -3.1507 0.0263 -4.3674 C -2.8558 1.9541 -5.7697 Н -3.2395 3.8415 -4.7805 C -3.2173 -1.4087 -4.1285 C -2.8145 0.5714 -5.6190 Н -2.6052 2.4046 -6.7267 N -3.7309 -1.8788 -2.9523 C -2.8885 -2.5241 -4.9028 Н -2.5505 -0.0779 -6.4469 C -3.7550 -3.2440 -2.9386 Н -4.0699 -1.3028 -2.1946 C -3.2208 -3.6736 -4.1567 Н -2.4408 -2.4996 -5.8866 C -4.3115 -3.9402 -1.7881 Н -3.0936 -4.7023 -4.4654 N -4.8257 -3.1480 -0.8216 C -4.3177 -5.3419 -1.6873 C -5.3500 -3.7283 0.2593 C -4.8738 -5.9282 -0.5567 Н -3.8860 -5.9472 -2.4779 C -5.4027 -5.1113 0.4450 Н -5.7305 -3.0528 1.0223 Н -4.8885 -7.0103 -0.4538 Н -5.8388 -5.5282 1.3474

TABLE S12: xyz coordinates of the optimized structure of $A-(PT)_{10}$ obtained at B3LYP-D3/6-31G(d) level.

С	-3.3720	-5.1948	-1.8445
С	-4.6566	-5.6620	-2.0077
\mathbf{S}	-4.6450	-7.3961	-2.2615
С	-2.9177	-7.4538	-2.1456
С	-2.3836	-6.2135	-1.9197
С	-5.8896	-4.8678	-1.9663
Ν	-5.7169	-3.5390	-1.8932
С	-6.7893	-2.7313	-1.8514
С	-8.1029	-3.2332	-1.8807
С	-8.2815	-4.6109	-1.9586
С	-7.1719	-5.4486	-1.9984
С	-6.4842	-1.3001	-1.7673
\mathbf{S}	-7.7009	-0.0461	-1.8654
С	-6.5050	1.2117	-1.6519
С	-5.2471	0.6630	-1.5161
С	-5.2351	-0.7465	-1.5840
С	-6.8241	2.6419	-1.6130
Ν	-5.7585	3.4480	-1.4991
С	-5.9267	4.7776	-1.4459
С	-7.2017	5.3681	-1.5114
С	-8.3085	4.5323	-1.6360
С	-8.1337	3.1522	-1.6841
С	-4.6836	5.5390	-1.2916
\mathbf{S}	-4.5918	7.2858	-1.3075
С	-2.8703	7.2526	-0.9982
С	-2.4205	5.9521	-0.9073
С	-3.4378	4.9909	-1.0727

С	-2.0415	8.4476	-0.8161
Ν	-0.7246	8.2026	-0.7406
С	0.1384	9.2116	-0.5469
С	-0.2958	10.5432	-0.4226
С	-1.6633	10.7996	-0.4982
С	-2.5588	9.7510	-0.6936
С	1.5448	8.7946	-0.4839
\mathbf{S}	2.8852	9.8692	-0.1313
С	4.0415	8.5558	-0.2521
С	3.3969	7.3740	-0.5483
С	1.9989	7.5077	-0.6788
С	5.4883	8.7018	-0.0502
Ν	6.1673	7.5446	-0.0697
С	7.4980	7.5427	0.1004
С	8.2197	8.7328	0.3024
С	7.5165	9.9350	0.3201
С	6.1350	9.9356	0.1424
С	8.1093	6.2080	0.0676
\mathbf{S}	9.8344	5.9075	0.1602
С	9.5944	4.1734	0.0545
С	8.2514	3.8796	-0.0441
С	7.4196	5.0192	-0.0381
С	10.6810	3.1863	0.0691
Ν	10.2708	1.9089	0.0369
С	11.1717	0.9145	0.0399
С	12.5546	1.1683	0.0778
С	12.9812	2.4935	0.1108
С	12.0455	3.5249	0.1064
С	10.5891	-0.4329	0.0070
\mathbf{S}	11.5294	-1.9110	-0.0661

С	10.0808	-2.8991	-0.0657
С	8.9567	-2.1033	-0.0107
С	9.2415	-0.7217	0.0288
С	10.0845	-4.3663	-0.1182
Ν	8.8688	-4.9291	-0.0371
С	8.7441	-6.2646	-0.0806
С	9.8614	-7.1091	-0.2091
С	11.1230	-6.5259	-0.2943
С	11.2516	-5.1401	-0.2503
С	7.3626	-6.7503	0.0243
\mathbf{S}	6.9009	-8.4378	-0.0937
С	5.2063	-8.0482	0.1331
С	5.0429	-6.6884	0.2885
С	6.2506	-5.9611	0.2262
С	4.1264	-9.0428	0.1490
Ν	2.9098	-8.5373	0.4047
С	1.8402	-9.3473	0.4376
С	1.9518	-10.7311	0.2118
С	3.2136	-11.2559	-0.0558
С	4.3227	-10.4145	-0.0918
С	0.5729	-8.6675	0.7307
\mathbf{S}	-1.0017	-9.4395	0.6587
С	-1.8125	-7.9545	1.1144
С	-0.8962	-6.9431	1.3010
С	0.4409	-7.3430	1.0881
С	-3.2699	-7.8045	1.2025
Ν	-3.6841	-6.5336	1.2995
С	-4.9955	-6.2584	1.3538
С	-5.9663	-7.2765	1.3213
С	-5.5354	-8.5977	1.2431
С	-4.1733	-8.8810	1.1815
---	---------	----------	---------
Η	-3.8200	-9.9059	1.1218
Η	-6.2608	-9.4064	1.2231
Η	-7.0250	-7.0388	1.3516
С	-5.3126	-4.8296	1.4234
Η	-1.2083	-5.9443	1.5762
Η	1.3031	-6.6968	1.1894
Η	5.3112	-10.8095	-0.3047
Η	3.3329	-12.3208	-0.2353
Η	1.0796	-11.3762	0.2527
Η	4.0649	-6.2505	0.4395
Η	6.3309	-4.8865	0.3251
Η	12.2284	-4.6717	-0.3208
Η	12.0058	-7.1512	-0.3950
Η	9.7467	-8.1883	-0.2371
Η	7.9622	-2.5299	-0.0025
Η	8.4964	0.0618	0.0736
Η	12.3640	4.5625	0.1274
Η	14.0429	2.7225	0.1399
Η	13.2730	0.3545	0.0846
Η	7.9003	2.8588	-0.1188
Η	6.3399	4.9965	-0.1052
Η	5.5751	10.8657	0.1471
Η	8.0453	10.8718	0.4725
Η	9.2955	8.7173	0.4466
Η	3.9424	6.4469	-0.6650
Η	1.3191	6.6984	-0.9105
Η	-3.6281	9.9318	-0.7377
Η	-2.0309	11.8177	-0.4023
Η	0.4134	11.3518	-0.2748

Η	-1.3826	5.7256	-0.7021
Η	-3.2961	3.9202	-1.0131
Η	-8.9876	2.4873	-1.7685
Η	-9.3078	4.9561	-1.6859
Η	-7.3209	6.4454	-1.4530
Η	-4.3750	1.2844	-1.3621
Η	-4.3532	-1.3662	-1.4901
Η	-7.2939	-6.5259	-2.0480
Η	-9.2834	-5.0312	-1.9793
Η	-8.9562	-2.5642	-1.8339
Η	-3.1712	-4.1472	-1.6613
Η	-1.3216	-6.0420	-1.7871
Η	-2.3991	-8.3999	-2.2238
\mathbf{S}	-6.9375	-4.1946	1.5433
С	-6.3551	-2.5448	1.5231
С	-4.9798	-2.5191	1.4334
С	-4.3947	-3.8012	1.3740
Η	-3.3348	-3.9958	1.2796
Η	-4.4358	-1.5850	1.3924
С	-7.2322	-1.3712	1.5601
Ν	-6.5945	-0.1941	1.6587
С	-7.3013	0.9463	1.6776
С	-8.7069	0.9496	1.6009
С	-9.3677	-0.2712	1.5065
С	-8.6344	-1.4536	1.4804
С	-6.5008	2.1701	1.7811
Η	-9.2639	1.8811	1.6115
Η	-10.4521	-0.3004	1.4437
Η	-9.1315	-2.4141	1.3892
S	-7.2015	3.7692	1.8810

С	-5.6233	4.5220	1.9437
С	-4.6307	3.5662	1.8925
С	-5.1238	2.2458	1.7989
Η	-4.5095	1.3573	1.7345
Η	-3.5842	3.8417	1.9062
С	-5.4278	5.9727	2.0042
Ν	-4.1466	6.3782	2.1295
С	-3.8989	7.6866	2.1685
С	-4.8893	8.6703	2.1004
С	-6.2136	8.2525	1.9748
С	-6.4911	6.8904	1.9194
Η	-2.8505	7.9675	2.2505
Η	-4.6236	9.7221	2.1388
Η	-7.0215	8.9768	1.9132
Η	-7.5133	6.5421	1.8055

TABLE S13: xyz coordinates of the optimized structure of $B-(PT)_{10}$ obtained at B3LYP-D3/6-31G(d) level.

162			
Ν	-0.9717	3.5900	1.5549
С	-0.0873	4.2517	2.3166
С	-0.0714	5.6563	2.3757
С	-0.9997	6.3581	1.6093
С	-1.9085	5.6680	0.8126
С	-1.8649	4.2620	0.8143
Η	0.6372	6.1769	3.0111
Η	-1.0120	7.4449	1.6316
Η	-2.6263	6.1981	0.1965
С	-2.7749	3.4336	0.0273
\mathbf{S}	-2.4986	1.7178	-0.0388
С	-3.9045	1.4941	-1.0390
С	-4.5423	2.6924	-1.2970
С	-3.8964	3.7974	-0.6934
Η	-4.2584	4.8167	-0.7670
Η	-5.4349	2.7794	-1.9064
С	-4.2523	0.1375	-1.4554
С	-5.4412	-0.1834	-2.1333
С	-5.6864	-1.5204	-2.4362
С	-4.7613	-2.4975	-2.0787
С	-3.5853	-2.0921	-1.4222
Ν	-3.3590	-0.8055	-1.1229
Η	-6.1574	0.5887	-2.3929
Η	-6.6019	-1.8015	-2.9510
Η	-4.9331	-3.5424	-2.3133
С	-0.3761	-3.9565	-0.2014
С	-1.2523	-4.9294	-0.6426

С	-2.4727	-4.3941	-1.1187
С	-2.5231	-3.0163	-1.0318
\mathbf{S}	-1.0542	-2.3617	-0.3641
Η	-1.0243	-5.9893	-0.6402
Η	-3.2861	-5.0028	-1.4974
С	0.8357	3.4093	3.0764
С	1.9700	3.7586	3.7833
\mathbf{S}	0.5568	1.6896	3.1194
С	2.6254	2.6422	4.3559
Η	2.3423	4.7742	3.8559
С	1.9848	1.4470	4.0904
Η	3.5414	2.7180	4.9320
С	2.3588	0.0832	4.4642
С	3.5685	-0.2364	5.1070
Ν	1.4739	-0.8661	4.1289
С	3.8357	-1.5740	5.3846
Η	4.2821	0.5387	5.3640
С	1.7305	-2.1570	4.3894
С	2.9187	-2.5585	5.0235
Η	4.7636	-1.8507	5.8787
С	0.6849	-3.0903	3.9736
Η	3.1088	-3.6054	5.2345
\mathbf{S}	-0.8122	-2.4330	3.3729
С	0.6786	-4.4714	3.9552
С	-1.4434	-4.0331	3.0946
С	-0.5314	-5.0077	3.4509
Η	1.5223	-5.0801	4.2603
С	-2.7791	-4.1562	2.5133
Η	-0.7168	-6.0715	3.3462
Ν	-3.4361	-2.9978	2.3588

С	-3.3464	-5.3802	2.1179
\mathbf{C}	-4.6571	-2.9764	1.8057
\mathbf{C}	-4.6165	-5.3636	1.5471
Η	-2.8016	-6.3100	2.2406
\mathbf{C}	-5.2904	-4.1564	1.3771
Η	-5.0806	-6.2937	1.2291
Η	-6.2808	-4.1261	0.9359
\mathbf{C}	-5.2623	-1.6507	1.6965
\mathbf{C}	-6.4313	-1.2577	1.0756
\mathbf{S}	-4.4293	-0.2957	2.4114
\mathbf{C}	-6.6608	0.1357	1.1703
Η	-7.0863	-1.9377	0.5427
\mathbf{C}	-5.6694	0.8009	1.8672
Η	-7.5178	0.6297	0.7253
\mathbf{C}	-5.5248	2.2293	2.1465
\mathbf{C}	-6.4574	3.1846	1.7030
Ν	-4.4263	2.5817	2.8443
\mathbf{C}	-6.2311	4.5269	1.9866
Η	-7.3339	2.8790	1.1413
\mathbf{C}	-4.2194	3.8723	3.1021
\mathbf{C}	-5.0853	4.8898	2.6965
Η	-6.9376	5.2818	1.6508
Η	-4.8628	5.9269	2.9275
Η	-3.3075	4.1046	3.6486
\mathbf{C}	0.9641	-4.0945	0.3647
Ν	1.6086	-2.9425	0.6005
\mathbf{C}	1.5468	-5.3383	0.6655
С	2.8334	-2.9506	1.1466
С	2.8138	-5.3508	1.2416
Η	1.0122	-6.2618	0.4716

С	3.4456	-1.6366	1.3300
С	3.4742	-4.1523	1.4964
Η	3.2875	-6.2966	1.4932
\mathbf{S}	2.6303	-0.2356	0.6949
С	4.6353	-1.2970	1.9448
Η	4.4666	-4.1441	1.9338
С	3.8997	0.8078	1.2700
С	4.8916	0.0942	1.9145
Η	5.2959	-2.0170	2.4142
С	3.7895	2.2460	1.0358
Η	5.7813	0.5486	2.3355
Ν	2.7693	2.6233	0.2527
С	4.6726	3.1867	1.5951
С	2.5629	3.9209	-0.0144
С	4.4544	4.5356	1.3302
Η	5.4907	2.8674	2.2316
С	1.4413	4.1971	-0.9106
С	3.3893	4.9232	0.5213
Η	5.1163	5.2870	1.7538
\mathbf{S}	0.6105	2.8491	-1.6334
С	0.9047	5.4032	-1.3187
Η	3.2129	5.9686	0.2924
С	-0.4675	3.9209	-2.4839
С	-0.1838	5.2461	-2.2114
Η	1.2650	6.3668	-0.9761
С	-1.5161	3.3374	-3.3203
Η	-0.7368	6.0785	-2.6338
Ν	-1.4352	2.0103	-3.4955
С	-2.5586	4.0912	-3.8882
С	-2.3660	1.3633	-4.2127

C -3.5201 3.4247 -4.6429 H -2.6207 5.1619 -3.7261 C -2.1708 -0.0812 -4.3270 C -3.4396 2.0446 -4.8122Н -4.3376 3.9811 -5.0945 S -0.6804 -0.7701 -3.7431 C -3.0181 -1.0509 -4.8262 H -4.1769 1.5089 -5.4003 C -1.2092 -2.3730 -4.1792 C -2.4727 -2.3542 -4.7378 Н -4.0106 -0.8415 -5.2089 C -0.3316 -3.5062 -3.8896 Н -2.9995 -3.2450 -5.0626 N 0.8735 -3.1877 -3.3944 C -0.7139 -4.8449 -4.0884 C 1.7444 -4.1517 -3.0599 C 0.1906 -5.8474 -3.7505 Н -1.6947 -5.0893 -4.4812 C 1.4356 -5.5134 -3.2237 C 3.0206 - 3.6824 - 2.5233Н -0.0775 -6.8913 -3.8924 Н 2.1534 -6.2814 -2.9568 S 3.3528 -1.9716 -2.5290 C 4.0575 -4.3987 -1.9584 C 4.8954 -2.2315 -1.7602 C 5.1213 -3.5735 -1.5217 Н 4.0439 -5.4752 -1.8307 C 5.7263 -1.0732 -1.4335 Н 6.0156 -3.9564 -1.0421 C 6.9114 -1.1700 -0.6830 N 5.2731 0.1068 -1.8829
C 7.6150 -0.0013 -0.4073
H 7.2592 -2.1294 -0.3161
C 5.9457 1.2357 -1.6132
C 7.1373 1.2231 -0.8666
H 8.5344 -0.0439 0.1711
C 5.3593 2.4633 -2.1481
H 7.6742 2.1433 -0.6633
C 5.7295 3.7770 -1.9581
S 3.9462 2.3535 -3.1707
C 4.8815 4.6984 -2.6328
H 6.5635 4.0766 -1.3333
C 3.8788 4.0729 -3.3292
H 5.0033 5.7754 -2.5889
H 3.0824 4.5320 -3.9002