Electronic Supplementary Information

Hydrogen-bonded ring closing and opening of protonated methanol clusters $\mathrm{H}^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{n}(n=4-8)$ with the inert gas tagging

Ying-Cheng Li, ${ }^{1 \ddagger}$ Toru Hamashima, ${ }^{2 \ddagger}$ Ryoko Yamazaki, ${ }^{2}$ Tomohiro Kobayashi, ${ }^{2}$

Yuta Suzuki, ${ }^{2}$ Kenta Mizuse, ${ }^{2 \dagger}$ Asuka Fujii, ${ }^{2} *$ Jer-Lai Kuo ${ }^{1 *}$

${ }^{1}$ Academia Sinica, ${ }^{2}$ Tohoku University
\ddagger Ying-Chen Li and Toru Hamashima contributed equally to this study.
\dagger Present address Tokyo Institute of Technology, Tokyo, 152-8551 Japan

* To whom corresponding should be addressed.

E-mail: asukafujii@m.tohoku.ac.jp (A.F.), jlkuo@pub.iams.sinica.edu.tw (J.-L.K.).

Contents

I. Confirmation of the accuracy of the relative energy evaluation by B3LYP/6-31+G(d).
II. Number of stable isomers of $\mathrm{H}^{+}(\mathrm{MeOH})_{n}$ optimized with B3LYP/6-31G(d).
III. IR Spectra of $\mathrm{H}^{+}(\mathrm{MeOH})_{4}$ with one and two Ar and N_{2} tags.
IV. Temperature dependence of simulated Spectra of $\mathrm{H}^{+}(\mathrm{MeOH})_{n}(n=5-8)$ and their comparison with bare and $\mathrm{Ne} / \mathrm{Ar}$-tagged spectra.
V. Binding energies of Ar and Ne to $\mathrm{H}^{+}(\mathrm{MeOH})_{n}(n=3-5)$.

Supplementary Information (I)

Comparisons on the relative energetics between B3LYP/6-31+G(d) with ω B97X-D/ $6-311++G(3 d f, 3 p d)$ for some selected isomers of $\mathbf{H}^{+}(\mathrm{MeOH})_{\boldsymbol{n}}(\boldsymbol{n}=5-7)$. In each size and calculationn level, the energy of the global minimum isomer is taken as zero.

A clear linear correlation is seen between the relative energies by the two levels of theory. This plot indicates that the relative energy evaluation by B3LYP/6-31+G(d) has the reasonable accuracy in comparison with the dispersion-corrected calculation. More detailed confirmation for $n=7$ is seen in Ref. 7 of the main text.

Supplementary Information (II)

Table SI: Number of stable isomers of $\mathbf{H}^{+}(\mathbf{M e O H})_{n}(n=4-8)$ optimized with B3LYP/6-31+G(d).

B3LYP/6-31+G(d)	Linear (L)	Cyclic (C \& Ct)	bi-Cylic (bC)	all
$\mathrm{n}=4$	1	1	0	2
$\mathrm{n}=5$	10	2	1	13
$\mathrm{n}=6$	16	5	1	22
$\mathrm{n}=7$	35	16	5	56
$\mathrm{n}=8$	47	38	8	93

Geometry of all these isomers is available upon request.

Supplementary Information (III)

IR Spectra of $\mathbf{H}^{+}(\mathbf{M e O H})_{4}$ with one and two Ar and \mathbf{N}_{2} tags.
(a) $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-(\mathrm{Ar})_{m}$

(a) $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-\left(\mathrm{N}_{2}\right)_{\mathrm{m}}$

Two free OH strech bands appear in $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-\left(\mathrm{N}_{2}\right)_{1}$, but only one free OH band is seen in $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-\left(\mathrm{N}_{2}\right)_{2}$. $\quad \mathrm{H}$-bond to the N_{2} tag causes the small shift of the "free" OH bond in the terminal methanol moiety. In $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-\left(\mathrm{N}_{2}\right)_{2}$, both the terminal OH bonds are H -bonded to the N_{2} tags, and the two "free" OH bands overlap with each other. The spectra of $\mathrm{H}^{+}(\mathrm{MeOH})_{4}-(\mathrm{Ar})_{m}$, in which the perturbation by the tag is much less, are shown for comparison.

Supplementary Information (IV)

Temperature dependence of simulated spectra of $\mathbf{H}^{+}(\mathrm{MeOH})_{n}(n=5-8)$ and their comparison with bare and $\mathrm{Ne} /$ Ar-tagged spectra. All the simulations were performed at B3LYP/6-31+G(d).

We can see that the experimentally observed spectra of the bare species are comparable
with the simulated spectra at $150 \sim 200 \mathrm{~K}$. The Ne/Ar-tagged spectra compare well with the simulated spectra at $0 \sim 70 \mathrm{~K}$.

Supplementary Information (V)

Binding energies (D_{e} in $\mathrm{kcal} / \mathrm{mol}$) of Ar and Ne to $\mathrm{H}^{+}(\mathrm{MeOH})_{\mathrm{n}}(\mathrm{n}=3-5)$ at $\omega B 97 X-D / 6-311++G(3 d f, 3 p d)$. Maximum vibrational temperature ($T_{\max }$) is also shown.
$\mathrm{D}_{\mathrm{e}} \quad$ (kcal/mol)
$\mathrm{H}^{+}(\mathrm{MeOH})_{3}-\mathrm{Ar} / \mathrm{Ne}$

Binding energies of Ar and Ne to $\mathrm{H}^{+}(\mathrm{MeOH})_{n}(n=3-5)$ are shown above. Ar atoms are shown in yellow and Ne atoms in green. We should note here that binding of Ar and Ne to $\mathrm{H}^{+}(\mathrm{MeOH})_{7}$ can be found in Figure 5 in one of our previous works (Ref. 7 of the main text)

