Electronic Supplementary Information

Hydrogen-bonded ring closing and opening of protonated methanol clusters $H^+(CH_3OH)_n$ (n = 4 - 8) with the inert gas tagging

Ying-Cheng Li,^{1‡} Toru Hamashima,^{2‡} Ryoko Yamazaki,² Tomohiro Kobayashi,²

Yuta Suzuki,² Kenta Mizuse,^{2†}Asuka Fujii,²* Jer-Lai Kuo¹*

¹Academia Sinica, ²Tohoku University

[‡] Ying-Chen Li and Toru Hamashima contributed equally to this study.

[†] Present address Tokyo Institute of Technology, Tokyo, 152-8551 Japan

* To whom corresponding should be addressed.

E-mail: asukafujii@m.tohoku.ac.jp (A.F.), jlkuo@pub.iams.sinica.edu.tw (J.-L.K.).

Contents

- I. Confirmation of the accuracy of the relative energy evaluation by B3LYP/6-31+G(d).
- II. Number of stable isomers of $H^+(MeOH)_n$ optimized with B3LYP/6-31G(d).
- III. IR Spectra of H^+ (MeOH)₄ with one and two Ar and N₂ tags.
- IV. Temperature dependence of simulated Spectra of $H^+(MeOH)_n$ (n = 5 8) and their comparison with bare and Ne/Ar-tagged spectra.
- V. Binding energies of Ar and Ne to $H^+(MeOH)_n$ (n = 3 5).

Supplementary Information (I)

Comparisons on the relative energetics between B3LYP/6-31+G(d) with ω B97X-D/ 6-311++G(3df,3pd) for some selected isomers of H⁺(MeOH)_n (n = 5-7). In each size and calculationn level, the energy of the global minimum isomer is taken as zero.

A clear linear correlation is seen between the relative energies by the two levels of theory. This plot indicates that the relative energy evaluation by B3LYP/6-31+G(d) has the reasonable accuracy in comparison with the dispersion-corrected calculation. More detailed confirmation for n = 7 is seen in Ref. 7 of the main text.

Supplementary Information (II)

Table SI: Number of stable isomers of $H^+(MeOH)_n$ (n = 4 - 8) optimized with

38

all

2

13

22

56

93

8

B3LYP/6-31+G(d)	Linear (L)	Cyclic (C & Ct)	bi-Cylic (bC)
n=4	1	1	0
n=5	10	2	1
n=6	16	5	1
n=7	35	16	5

B3LYP/6-31+G(d).

n=8

Geometry of all these isomers is available upon request.

47

Supplementary Information (III)

IR Spectra of H⁺(MeOH)₄ with one and two Ar and N₂ tags.

Two free OH strech bands appear in $H^+(MeOH)_4-(N_2)_1$, but only one free OH band is seen in $H^+(MeOH)_4-(N_2)_2$. H-bond to the N₂ tag causes the small shift of the "free" OH bond in the terminal methanol moiety. In $H^+(MeOH)_4-(N_2)_2$, both the terminal OH bonds are H-bonded to the N₂ tags, and the two "free" OH bands overlap with each other. The spectra of $H^+(MeOH)_4-(Ar)_m$, in which the perturbation by the tag is much less, are shown for comparison.

Supplementary Information (IV)

Temperature dependence of simulated spectra of $H^+(MeOH)_n$ (n = 5 - 8) and their comparison with bare and Ne/Ar-tagged spectra. All the simulations were performed at B3LYP/6-31+G(d).

We can see that the experimentally observed spectra of the bare species are comparable with the simulated spectra at $150 \sim 200$ K. The Ne/Ar-tagged spectra compare well with the simulated spectra at $0 \sim 70$ K.

Supplementary Information (V)

Binding energies (D_e in kcal/mol) of Ar and Ne to H⁺(MeOH)_n (n = 3 - 5) at ω B97X-D/6-311++G(3df,3pd). Maximum vibrational temperature (T_{max}) is also shown.

Binding energies of Ar and Ne to $H^+(MeOH)_n$ (n = 3 - 5) are shown above. Ar atoms are shown in yellow and Ne atoms in green. We should note here that binding of Ar and Ne to $H^+(MeOH)_7$ can be found in Figure 5 in one of our previous works (Ref. 7 of the main text)