## **Supplementary Information**

## Poly(ionic liquid)s as Phase Splitting Promoters in Aqueous Biphasic Systems

Karen João,<sup>a‡</sup> Liliana C. Tomé,<sup>a‡</sup> Mehmet Isik,<sup>b</sup> David Mecerreyes,<sup>b,c</sup> and Isabel M. Marrucho\*a

<sup>a</sup> Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.

<sup>b</sup> POLYMAT, Institute for Polymer Materials, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain.

° IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain.

‡ Equally contributing authors

\* Corresponding author

Tel: +351 21 4469720

Fax: +351 21 4411277

E-mail: <u>imarrucho@itqb.unl.pt</u>



**Fig. S1** <sup>1</sup>H – NMR spectra of the prepared pyrrolidinium-based PILs containing carboxylated counter-anions.



Fig. S2 FTIR transmission spectra of the prepared pyrrolidinium-based PILs containing carboxylate counter-anions.



Fig. S3 <sup>1</sup>H-NMR spectrum of diallyldimethylammonium acetate monomer in D<sub>2</sub>O.



Fig. S4 <sup>13</sup>C-NMR spectrum of diallyldimethylammonium acetate monomer in D<sub>2</sub>O.



Fig. S5 <sup>1</sup>H-NMR spectrum of diallyldimethylammonium trifluoroacetate monomer in D<sub>2</sub>O.



Fig. S6 <sup>19</sup>F-NMR spectrum of diallyldimethylammonium trifluoroacetate monomer in D<sub>2</sub>O.



Fig. S7 <sup>13</sup>C-NMR spectrum of diallyldimethylammonium trifluoroacetate monomer in D<sub>2</sub>O.



Fig. S8 <sup>1</sup>H-NMR spectrum of diallyldimethylammonium hexanoate monomer in D<sub>2</sub>O.



Fig. S9 <sup>13</sup>C-NMR spectrum of diallyldimethylammonium hexanoate monomer in D<sub>2</sub>O.



Fig. S10 <sup>1</sup>H-NMR spectrum of diallyldimethylammonium adipate monomer in D<sub>2</sub>O.



Fig. S11 <sup>13</sup>C-NMR spectrum of diallyldimethylammonium adipate monomer in D<sub>2</sub>O.



Fig. S12 <sup>1</sup>H-NMR spectrum of diallyldimethylammonium citrate monomer in D<sub>2</sub>O.



Fig. S13 <sup>13</sup>C-NMR spectrum of diallyldimethylammonium citrate monomer in D<sub>2</sub>O



Fig. S14 Phase diagrams and experimental tie-lines of the PIL +  $K_3PO_4$  +  $H_2O$  ternary systems at 25 °C: TL data ( $\Delta$ ).

| Poly([Pyr <sub>11</sub> ][Ac]) |                    | Poly([Pyr <sub>11</sub> ][TFAc]) |                        | Poly([P   | Poly([Pyr <sub>11</sub> ]Cl)      |  |
|--------------------------------|--------------------|----------------------------------|------------------------|-----------|-----------------------------------|--|
| $M_w = 52 \text{ kDa}$         |                    | $M_w = A$                        | $M_w = 41 \text{ kDa}$ |           | High M <sub>w</sub> (400–500 kDa) |  |
| $100 w_1$                      | 100 w <sub>2</sub> | $100 w_1$                        | 100 w <sub>2</sub>     | $100 w_1$ | 100 w <sub>2</sub>                |  |
| 26.2596                        | 9.2460             | 20.1130                          | 9.0706                 | 25.8046   | 8.0396                            |  |
| 23.6251                        | 10.5594            | 18.3199                          | 9.7905                 | 23.6962   | 9.1665                            |  |
| 20.4992                        | 12.4717            | 17.1880                          | 10.3080                | 21.4650   | 10.1486                           |  |
| 18.6420                        | 13.5263            | 16.2908                          | 10.7877                | 20.1946   | 10.7919                           |  |
| 17.4376                        | 14.2218            | 15.6233                          | 11.0443                | 18.9313   | 11.5523                           |  |
| 16.2429                        | 15.0783            | 14.8718                          | 11.5248                | 17.5925   | 12.2591                           |  |
| 15.2695                        | 15.7040            | 13.9168                          | 11.8824                | 16.6004   | 12.9244                           |  |
| 14.2799                        | 16.4490            | 13.1502                          | 12.3178                | 15.8620   | 13.3244                           |  |
| 13.7514                        | 16.7815            | 12.4401                          | 12.7331                | 15.1564   | 13.6620                           |  |
| 12.9176                        | 17.4303            | 11.6786                          | 13.1785                | 13.9121   | 14.5306                           |  |
| 12.4770                        | 17.6629            | 10.8677                          | 13.6576                | 12.5483   | 15.3530                           |  |
| 11.8025                        | 18.1863            | 10.1428                          | 14.0940                | 11.3299   | 16.1939                           |  |
| 11.1769                        | 18.7167            | 9.2839                           | 14.7144                | 10.2933   | 17.0193                           |  |
| 10.5376                        | 19.1782            | 8.3619                           | 15.4104                | 9.3169    | 17.7953                           |  |
| 9.8251                         | 19.8267            | 7.6017                           | 16.0023                | 8.4428    | 18.4450                           |  |
| 9.0529                         | 20.4304            | 6.9327                           | 16.6163                | 7.7168    | 19.1538                           |  |
| 8.1961                         | 21.2268            | 6.2680                           | 17.2076                | 6.9568    | 19.9035                           |  |
| 3.9362                         | 25.9181            | 5.5884                           | 17.9142                | 6.4959    | 20.4209                           |  |
| 3.6874                         | 26.2579            | 4.9642                           | 18.5869                | 6.0738    | 20.8780                           |  |
| 3.5535                         | 26.4338            | 4.4495                           | 19.2114                | 5.6254    | 21.3720                           |  |
| 3.4284                         | 26.6076            | 3.9709                           | 19.8345                | 4.9988    | 22.1552                           |  |
| 2.8864                         | 27.4917            | 3.5277                           | 20.4825                | 4.3846    | 22.9050                           |  |
| 2.2169                         | 28.5805            | 3.0997                           | 21.1735                | 3.6505    | 24.1190                           |  |
| -                              | -                  | 2.6971                           | 21.8946                | 1.9116    | 27.4357                           |  |
| -                              | -                  | 2.2861                           | 22.7370                | -         | -                                 |  |
| -                              | -                  | 1.8250                           | 23.8209                | -         | -                                 |  |
| -                              | -                  | 1.3759                           | 25.1175                | -         | -                                 |  |
| -                              | -                  | 1.0118                           | 26.4352                | -         | -                                 |  |

**Table S1.** Weight fraction data for the ternary systems composed of PIL  $(1) + K_3PO_4(2) + H_2O(3)$  at 25 °C.

| Poly([Pyr <sub>11</sub> ]Cl)<br>Medium M <sub>w</sub> (200–350 kDa) |                    | Poly([I               | Poly([Pyr <sub>11</sub> ]Cl) |              | Poly([Pyr <sub>11</sub> ][Hex]) |  |
|---------------------------------------------------------------------|--------------------|-----------------------|------------------------------|--------------|---------------------------------|--|
|                                                                     |                    | Low $M_w$ (< 100 kDa) |                              | Mw = 53  kDa |                                 |  |
| $100 w_1$                                                           | 100 w <sub>2</sub> | $100 w_1$             | 100 w <sub>2</sub>           | $100 w_1$    | 100 w <sub>2</sub>              |  |
| 28.0804                                                             | 6.3072             | 27.4065               | 7.1018                       | 33.4319      | 5.4320                          |  |
| 25.5056                                                             | 7.5317             | 25.4169               | 7.8315                       | 31.1727      | 6.3029                          |  |
| 23.6835                                                             | 8.4730             | 23.3960               | 8.8055                       | 29.2123      | 7.0147                          |  |
| 22.1401                                                             | 9.2245             | 21.1792               | 10.0928                      | 27.4774      | 7.6531                          |  |
| 20.4171                                                             | 9.9699             | 19.7409               | 10.8721                      | 26.2518      | 7.8902                          |  |
| 18.7790                                                             | 10.8067            | 18.4385               | 11.6105                      | 25.1050      | 8.5309                          |  |
| 17.1123                                                             | 11.9289            | 17.1289               | 12.5842                      | 24.2942      | 8.7540                          |  |
| 16.0596                                                             | 12.4389            | 15.2265               | 13.6780                      | 23.2578      | 9.2987                          |  |
| 14.8766                                                             | 13.2595            | 13.0583               | 15.0552                      | 22.1119      | 9.7388                          |  |
| 13.3804                                                             | 14.3868            | 11.7321               | 16.0789                      | 20.6702      | 10.677                          |  |
| 11.9669                                                             | 15.2181            | 10.4187               | 17.1103                      | 19.4208      | 10.910                          |  |
| 11.0020                                                             | 15.9985            | 9.5497                | 17.8319                      | 18.5079      | 11.417                          |  |
| 9.8745                                                              | 16.9520            | 8.7117                | 18.6504                      | 17.7499      | 11.746                          |  |
| 8.7849                                                              | 17.8502            | 7.4660                | 19.7302                      | 16.8723      | 12.313                          |  |
| 7.9404                                                              | 18.6015            | 6.6567                | 20.5798                      | 16.1797      | 12.681                          |  |
| 7.1880                                                              | 19.3276            | 6.0333                | 21.2744                      | 15.5120      | 13.035                          |  |
| 6.3646                                                              | 20.2068            | 5.0364                | 22.4768                      | 14.6703      | 13.5454                         |  |
| 5.4585                                                              | 21.2498            | 3.7428                | 24.2894                      | 13.8179      | 13.993                          |  |
| 4.4784                                                              | 22.5157            | 2.8569                | 25.8212                      | 13.1396      | 14.400                          |  |
| 3.6918                                                              | 23.6931            | 2.3227                | 26.9320                      | 12.5304      | 14.710                          |  |
| 3.1105                                                              | 24.6746            | 1.8704                | 27.9495                      | 12.0027      | 15.016                          |  |
| 2.5726                                                              | 25.6230            | 1.3977                | 29.4635                      | 11.3467      | 15.491                          |  |
| 2.0376                                                              | 26.7827            | -                     | -                            | 10.5947      | 15.947                          |  |
| 1.4612                                                              | 28.3001            | -                     | -                            | 9.7573       | 16.470                          |  |
| -                                                                   | -                  | -                     | -                            | 8.7911       | 17.188                          |  |
| -                                                                   | -                  | -                     | -                            | 7.7706       | 17.959                          |  |
| -                                                                   | -                  | -                     | -                            | 6.9835       | 18.562                          |  |
| -                                                                   | -                  | -                     | -                            | 6.3134       | 19.076                          |  |
| -                                                                   | -                  | -                     | -                            | 5.7100       | 19.598                          |  |

| - | - | - | - | 5.1167 | 20.2240 |
|---|---|---|---|--------|---------|
| - | - | - | - | 4.5542 | 20.7250 |
| - | - | - | - | 3.9381 | 21.4057 |
| - | - | - | - | 3.1403 | 22.4014 |
| - | - | - | - | 2.6903 | 23.0655 |
| - | - | - | - | 2.2803 | 23.7447 |
| - | - | - | - | 1.8873 | 24.5169 |

| Poly([Pyr <sub>11</sub> ][Adi]) |                    | Poly([P   | yr <sub>11</sub> ][Cit]) |
|---------------------------------|--------------------|-----------|--------------------------|
| Mw =                            | 50 kDa             | Mw=       | 31 kDa                   |
| $100 w_1$                       | 100 w <sub>2</sub> | $100 w_1$ | 100 w <sub>2</sub>       |
| 16.2146                         | 16.2602            | 9.4685    | 27.8959                  |
| 15.1523                         | 16.5998            | 8.4626    | 28.2809                  |
| 14.1028                         | 16.7876            | 7.8686    | 28.5673                  |
| 13.2847                         | 17.0620            | 7.2712    | 28.8307                  |
| 12.4588                         | 17.2050            | 6.7639    | 29.0353                  |
| 11.1991                         | 17.6956            | 6.3972    | 29.1983                  |
| 9.3271                          | 18.4763            | 5.8366    | 29.4870                  |
| 7.9456                          | 18.9798            | 5.0251    | 29.9689                  |
| 6.8789                          | 19.6499            | 4.3260    | 30.4141                  |
| 5.8598                          | 20.3072            | 3.8578    | 30.7657                  |
| 4.9019                          | 20.9270            | 3.5230    | 31.0061                  |
| 3.9267                          | 21.8240            | 3.1336    | 31.3298                  |
| 2.9797                          | 22.9269            | 2.6640    | 31.7649                  |
| 2.1761                          | 24.2171            | 2.2285    | 32.2239                  |
| 1.5420                          | 25.5190            | 1.9158    | 32.6041                  |
| 1.0659                          | 26.9295            | 1.6502    | 32.9566                  |
| 0.7195                          | 28.1532            | 1.4225    | 33.3210                  |
| -                               | -                  | 1.1701    | 33.7333                  |
| -                               | -                  | 0.8549    | 34.3658                  |

| Poly([Pyr <sub>11</sub> ]Cl)<br>40 °C |         | Poly([Pyr <sub>11</sub> ]Cl)<br>50 °C |         |  |
|---------------------------------------|---------|---------------------------------------|---------|--|
|                                       |         |                                       |         |  |
| 26.0203                               | 8.7972  | 26.3240                               | 9.2903  |  |
| 24.3447                               | 9.4210  | 24.2191                               | 10.3755 |  |
| 22.3937                               | 10.5640 | 21.5039                               | 11.3209 |  |
| 20.4943                               | 11.2979 | 20.0747                               | 12.0556 |  |
| 18.8006                               | 12.3349 | 18.5554                               | 13.0256 |  |
| 17.5516                               | 12.9834 | 17.1118                               | 13.7603 |  |
| 16.4738                               | 13.7424 | 15.9488                               | 14.5412 |  |
| 15.4574                               | 14.3025 | 14.9763                               | 15.1714 |  |
| 14.6820                               | 14.7578 | 14.0864                               | 15.7337 |  |
| 13.9325                               | 15.2505 | 13.6405                               | 15.9533 |  |
| 13.2139                               | 15.7357 | 12.4914                               | 16.6140 |  |
| 12.2814                               | 16.3693 | 10.8497                               | 18.0426 |  |
| 10.5734                               | 17.6728 | 9.5972                                | 19.0802 |  |
| 9.1872                                | 18.8952 | 8.7112                                | 19.8904 |  |
| 8.1092                                | 19.9785 | 7.9455                                | 20.6774 |  |
| 7.4815                                | 20.5826 | 7.1256                                | 21.5504 |  |
| 6.2985                                | 21.6968 | 6.4991                                | 22.2353 |  |
| 5.2284                                | 22.9240 | 5.8385                                | 23.0930 |  |
| 3.9837                                | 24.7486 | 5.0986                                | 24.0146 |  |
| 3.2152                                | 26.1229 | 4.4151                                | 24.9874 |  |
| 2.6891                                | 27.0787 | 3.6926                                | 26.1375 |  |
| -                                     | -       | 2.8772                                | 27.5851 |  |
|                                       |         |                                       |         |  |

**Table S2.** Weight fraction data for the ternary systems composed of  $poly([Pyr_{11}]Cl)$  high  $M_w$  (400–500 kDa) (1) + K<sub>3</sub>PO<sub>4</sub> (2) + H<sub>2</sub>O (3) at 40 °C and 50 °C.