Supporting information for:

Mechanisms and Dynamics of Protonation and Lithiation of Ferrocene

Nishant Sharma, Jayanth K. Ajay, Krishnan Venkatasubbaiah, and Upakarasamy

Lourderaj*

School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, INDIA

E-mail: u.lourderaj@niser.ac.in

^{*}To whom correspondence should be addressed

Computational Details

The potential energy profiles for protonated and lithiated ferrocene were mapped using B3LYP^{S1,S2} and BPW91^{S3,S4} functionals and DZVP^{S5,S6} basis set. The stationary point structures were characterized by computing harmonic vibrational frequencies. GAUSSIAN 09^{S7} and NWChem^{S8} software were used to carry out these calculations. The protonation and lithiation energies were found to be 211.06 and 41.52 kcal/mol respectively. All the energies reported here are without zero-point-energy correction. At BPW91/DZVP level, **MP** and **AG** were found to be nearly degenerate. B3LYP/DZVP results were closer to CCSD(T)/pVDZ^{S9} ones and hence the ab initio trajectories were calculated using this level of theory.

Ab initio classical trajectories ^{S10,S11} were performed to understand the unimolecular as well as the bimolecular dynamics of protonation and lithiation of ferrocene using VENUS/NWChem, ^{S12} where the ab initio forces were computed at B3LYP/DZVP level of theory. The initial coordinates and momenta were selected using quasi-classical sampling procedure. ^{S13} The trajectories were integrated numerically using velocity-Verlet algorithm, ^{S14} using a time step of 0.5 fs in protonation reaction, and 0.5 fs and 0.3 fs for unimolecular and bimolecular dynamics in lithiation reaction. The trajectories were numerically integrated for 0.5-1 ps. The typical CPU time for ~1 ps integration of a trajectory on a 8 core Intel Xeon (3.0 GHz) processor is ~6 days.

In unimolecular dynamics study of protonated ferrocene, the trajectories were initiated from **MP** and **AG** minima, and the initial coordinates and momenta were chosen using a Boltzmann distribution of vibrational and rotational energies at 300 K. For bimolecular collision dynamics, the trajectories were initiated with ferrocene and H⁺ separated by 8 Å and with Boltzmann distribution of vibrational and rotational energies for ferrocene at 300 K. However, these trajectories failed due to SCF convergence issues at large separation between ferrocene and H⁺ during initialization. To overcome the problem and mimick bimolecular collisions, trajectories were initiated using three partially optimized structures (Fig. S4) obtained by fixing (i) the endo C-H distance at 5 Å in AG, (ii) H⁺ on top of the Cp ring with $\angle X_1$ -Fe-H = 4.6° and Fe-H at 6.6 Å (iii) $\angle X_1$ -Fe-H at 41.8° and Fe-H at 7.48 Å. The three optimized structures had one imaginary frequency and are 105.4,

97.9, and 98.0 kcal/mol above AG in energy. A Boltzmann distribution of energies is assumed at these structures. A total of 182 trajectories were initiated with different orientations of H^+ about ferrocene with Boltzmann distribution of vibrational and rotational energies at 300 K. Of the 182 trajectories, 80 resulted in the protonation of ferrocene. In the remaining 102 trajectories, H^+ moved away from ferrocene, and these trajectories were terminated after 200 fs.

The unimolecular dynamics study of lithiated ferrocene was performed by following trajectories initiated at **TSe** and **TSf**. For bimolecular collision reaction, trajectories were initiated with ferrocene and Li⁺ separated by 8 Å and relative kinetic energy of 0.89 kcal/mol corresponding to 300 K. The impact parameter (*b*) was taken to be zero for effective collisions. 80 trajectories were integrated, and all of them resulted in lithiation of ferrocene. Additional trajectories were calculated for b = 2 and b = 5 Å (8 each), and all of them were reactive.

	MP			AG			Ferrocene		
	BPW91 ^a	B3LYP ^a	B3LYP ^b	BPW91 ^a	B3LYP ^a	B3LYP ^b	BPW91 ^a	B3LYP ^a	B3LYP ^b
Fe-H ⁺ (Å)	1.50	1.48	1.49	1.58	1.67	1.70	-	-	-
$C-H^+(Å)$	1.87	1.87	1.88	1.36	1.23	1.22	-	-	-
$\text{Fe-X}_1(\text{\AA})^c$	1.68	1.71	1.70	1.67	1.71	1.70	1.64	1.68	1.67
$\text{Fe-X}_2(\text{\AA})^d$	1.68	1.71	1.70	1.68	1.70	1.69	1.64	1.68	1.67
X_1 -Fe- X_2 (°)	167	167	167	169	169	169	180	180	180
X_1 -Fe-H ⁺ (°)	97	97	97	80	74	74	-	-	-
C-H (Å)	-	-	-	-	-	-	1.09	1.08	1.08
Fe-C (Å)	-	-	-	-	-	-	2.05	2.08	2.07
Structure	eclipsed								
ΔE^{e} (kcal/mol) -0.03	2.60	2.58	0	0	0	-	-	-

Table S1: Comparison of structural parameters and relative energies of ferrocene and its protonated forms.

^{*a*}6-311++G** basis set. ^{*b*}DZVP basis set. ^{*c*}X₁ is the center of the Cp ring which is closer to the H⁺. ^{*d*}X₂ is the center of the Cp ring which is farther from the H⁺. ^{*e*} $\Delta E = E_{MP} - E_{AG}$ at different levels of theory.

		TSb			TSa			TSd		TSc^c
	BPW91 ^a	B3LYP ^a	B3LYP ^b	BPW91 ^a	B3LYP ^a	B3LYP ^b	BPW91 ^a	B3LYP ^a	B3LYP ^b	$B3LYP^{b}$
Im. Freq (cm ⁻¹) 44i	29i	30i	290i	144i	308i	653i	742i	848i	48i
$Fe-H^+(Å)$	1.59	1.68	1.71	1.52	1.48	1.50	I	I	I	1.48
$C-H^+(Å)$	1.34	1.22	1.21	1.57	1.80	1.70	1.29	1.28	1.29	1.91
$\operatorname{Fe-X_1(\mathring{A})^d}$	1.67	1.71	1.70	1.67	1.70	1.69	1.59	1.64	1.62	1.71
Fe- $X_2(Å)^e$	1.68	1.71	1.69	1.68	1.71	1.70	1.67	1.70	1.68	1.70
X ₁ -Fe-X ₂ (°)	168	169	169	168	167	167	178	178	178	159
X_1 -Fe-H ⁺ (°)	<i>6L</i>	74	74	87	94	91	25	25	25	98
Structure	staggered	staggered	staggered	eclipsed	eclipsed	eclipsed	eclipsed	eclipsed	eclipsed	staggered
ΔE^{f} (kcal/mol)	0.85	0.37	0.31	0.13	2.60	2.63	20.1	20.09	20.29	5.16
a 6-311++G ^{**} basis set. e X ₂ is the center of the C	<i>b</i> DZVP basis set. Dp ring which is fa	<i>c</i> TSc could not be uther from the H ⁺	located for B3LY. . ^f Energies relativ	P/6-311++g** ar e to AG at differ	nd BPW91/6-31] ent levels of thec	[++g** levels of ory.	theory. ${}^{d}X_{1}$ is the	e center of the C	p ring which is cl	loser to the H ⁺ .

tes.
ı sta
ition
ansi
nt tr
erei
diff
ıree
oft
ies .
nerg
ve e
elati
nd re
s an
leter
ram
l pa
ura
ruct
of st
son
Daris
lmo
2: C
le S.
Tab

	СР	TSe	ML	TSf
Fe-Li(Å)	3.60	3.53	2.46	2.53
C-Li(Å)	2.32	2.23	2.49	2.34
Li-H(Å)	3.06	1.97	2.49	2.19
$\text{Fe-X}_1(\text{\AA})^a$	1.64	1.68	1.69	1.70
$\text{Fe-X}_2(\text{\AA})^b$	1.68	1.67	1.69	1.70
C-X ₁ -Fe-Li(°)	-	-	44.15	4.01
X_1 -Fe-Li(°)	0.06	61.33	94	95.23
Structure	eclipsed	eclipsed	eclipsed	eclipsed
ΔE^c (kcal/mol) 0	23.62	7.05	8.52

 Table S3: Comparison of structural parameters and relative energies of lithiated ferrocene using B3LYP/DZVP level of theory.

 ${}^{a}X_{1}$ is the center of the Cp ring which is closer to the Li⁺. ${}^{b}X_{2}$ is the center of the Cp ring which is farther from the Li⁺. ^{*c*}Energies are given relative to **CP**.

Fig. S1: Comparison of energy differences between metal-protonated (MP) and agostic (AG) structures in different levels of theory.

TSb

TSa

TSd

TSc

(a)

Fig. S2: (a) Structures of **TSb**, **TSa**, **TSd** and **TSc** of protonated ferrocene. (b) MEP (in a.u.) map for **AG** and **MP** of protonated ferrocene

Fig. S3: Plot of population vs lifetime for agostic and metal-protonated forms when the trajectories were initiated from AG (a and b) and MP (c and d) minima respectively.

Fig. S4: Geometries used to sample trajectories for protonation of ferrocene to represent bimolecular collision.

Fig. S5: Electrostatic potential (in a.u.) map of ferrocene for different iso-values.

Fig. S6: MEP (in a.u.) map for **CP** and **ML** of lithiated ferrocene.

Fig. S7: Structures of TSg connecting two ML minima.

Fig. S8: Fe-Li and C-Li distance as a function of time for a representative trajectory that shows planetary motion.

References

- (S1) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (S2) Becke, A. D. J. Phys. Chem. 1993, 98, 5648.
- (S3) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (S4) Perdew, J. P. and Wang, Y. Phys. Rev. B 1992, 45, 13244..
- (S5) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.
- (S6) Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. J. Phys. Chem.
 1992, 96, 6630.
- (S7) Frisch, M. J. et al. Gaussian-09 Revision C.01. Gaussian Inc. Wallingford CT 2009.
- (S8) Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; Dam, H. V.; Wang, D.;
 Nieplocha, J.; Apra, E.; Windus, T.; de Jong, W. Comput. Phys. Commun. 2010, 181, 1477.
- (S9) Mayor-López, M. J.; Lüthi, H. P.; Koch, H.; Morgantini, P. Y.; Weber, J. J. Chem. Phys. 2000, 113, 8009.
- (S10) Sun, L.; Hase, W. L. Reviews in Computational Chemistry; John Wiley & Sons, Inc., 2003; pp 79–146.
- (S11) Lourderaj, U.; Song, K.; Windus, T. L.; Zhuang, Y.; Hase, W. L. J. Chem. Phys. 2007, 126.
- (S12) Lourderaj, U.; Sun, R.; Kohale, S. C.; Barnes, G. L.; de Jong, W. A.; Windus, T. L.;
 Hase, W. L. Comput. Phys. Commun. 2014, 185, 1074.
- (S13) Peslherbe, G. H.; Wang, H.; Hase, W. L. Advances in Chemical Physics; John Wiley & Sons, Inc., 2007; pp 171–201.
- (S14) Levesque, D.; Verlet, L. J. Stat. Phys. 1993, 72, 519.