## Electronic Supplementary Information: Rational Design of D-A<sub>1</sub>-D-A<sub>2</sub> Conjugated Polymers with Superior Spectral Coverage

Svante Hedström,<sup>a</sup> Qiang Tao,<sup>b</sup> Ergang Wang,<sup>b</sup> and Petter Persson<sup>\*a</sup>

<sup>a</sup>Division of Theoretical Chemistry, Lund University. P. O. Box 124, S-221 00 Lund, Sweden.

<sup>b</sup>Department of Chemistry and Chemical Engineering/Polymer Technology, Chalmers University

of Technology, S-412 96 Göteborg, Sweden

\*E-mail: petter.persson@teokem.lu.se Telephone: +46-462223311.

**Table S1.** Average out-of-plane dihedral angles of PTQTI, PBTDPP, and PBBTDPP, as calculated with  $\omega$ B97XD, and with PBE0 with and without a polarizable continuum medium (PCM) chloroform solvent. The  $\omega$ B97XD structures are systematically less planar than PBE0, attributed to a larger amount of exact exchange with this functional as a result of a large LC parameter  $\omega$ . The fact that the difference in planarity in PTQTI is similar to the other two polymers indicates that the dispersion interaction that could potentially be of significance for PTQTI (interactions between the side groups on isoindigo and alkoxyphenyl-quinoxaline) is not what mainly determines the planarity, which is the most important structural property for electronic and optical properties in conjugated systems. The addition of the PCM solvent does not noticeably affect the planarity.

| Method                                  | PTQTI | PBTDPP | PBBTDPP |
|-----------------------------------------|-------|--------|---------|
| PBE0/6-31G(d,p)                         | 10.5  | 1.0    | 0.0     |
| PBE0/6-31G(d,p)+PCM(CHCl <sub>3</sub> ) | 10.4  | 1.0    | 0.4     |
| ωB97XD/6-31G(d,p)                       | 18.4  | 12.4   | 7.9     |

**Table S2.** Calculated HOMO (H), LUMO (L), and LUMO+1 (L+1) energies of all D–A<sub>1</sub>–D–A<sub>2</sub> polymers, as monomers and as infinite polymers by linear extrapolation to 1/n=0 after plotting mono- and dimer orbital energies *vs.* 1/n. Note that the longer repeating unit resulting from using a 3T donor inevitably stabilizes monomer LUMO and destabilizes HOMO, compared to T donor monomers. The planarity of the polymers is presented as the average out-of-plane dihedral angles of dimers.

| Polymer   | H <sub>mono</sub> [eV] | L <sub>mono</sub> [eV] | L+1 <sub>mono</sub> [eV] | H <sub>poly</sub> [eV] | L <sub>poly</sub> [eV] | Out-of-plane [°] |
|-----------|------------------------|------------------------|--------------------------|------------------------|------------------------|------------------|
| PTQTI     | -5.19                  | -2.62                  | -2.17                    | -4.85                  | -2.89                  | 10.5             |
| PBTDPP    | -5.00                  | -2.8                   | -2.37                    | -4.75                  | -3.22                  | 1.0              |
| PBBTDPP   | -4.93                  | -3.56                  | -2.49                    | -4.58                  | -3.82                  | 0.0              |
| PTPhQBTz  | -5.13                  | -2.11                  | -1.6                     | -4.49                  | -2.59                  | 7.7              |
| PTPzQPhQ  | -5.23                  | -2.78                  | -2.08                    | -4.42                  | -3.08                  | 12.8             |
| PTBTBTz   | -5.34                  | -2.45                  | -1.83                    | -4.78                  | -3.01                  | 0.7              |
| PTIIBTz   | -5.27                  | -2.68                  | -1.92                    | -4.98                  | -2.93                  | 10.0             |
| PTPzQBTz  | -5.21                  | -2.87                  | -1.79                    | -4.50                  | -3.23                  | 5.7              |
| P3TPhQBTz | -4.88                  | -2.32                  | -2.05                    | -4.65                  | -2.62                  | 9.0              |
| P3TPzQPhQ | -4.85                  | -2.98                  | -2.36                    | -4.57                  | -3.17                  | 10.2             |
| P3TBTBTz  | -5.00                  | -2.64                  | -2.19                    | -4.82                  | -2.85                  | 0.0              |
| P3TIIBTz  | -5.03                  | -2.76                  | -2.21                    | -4.93                  | -2.88                  | 13.0             |
| P3TPzQBTz | -4.91                  | -3.02                  | -2.15                    | -4.62                  | -3.19                  | 7.1              |
| P3TQTIF   | -5.03                  | -2.75                  | -2.36                    | -4.94                  | -2.85                  | 18.0             |
| PTIIBTzF  | -5.37                  | -2.69                  | -2.01                    | -5.06                  | -2.96                  | 10.0             |

**Table S3.** List of electronic transitions with wavelengths and oscillator strengths of PTQTI, PBTDPP, and PBBTDPP as calculated with TD-PBE0/6-31G(d,p)//PBE0/6-31G(d,p), with and without a PCM-CHCl<sub>3</sub> solvent. The addition of the implicit solvent strengthens the transitions and corresponding absorption peaks, and also slightly red-shifts the transitions in a systematic fashion. The overall absorption remains however mostly unchanged.

| PTQTI  |        |        |        |        |         |           |        |  |  |
|--------|--------|--------|--------|--------|---------|-----------|--------|--|--|
|        | Gas l  | Phase  |        |        | PCM (ch | loroform) |        |  |  |
| Mon    | omer   | Dir    | ner    | Mon    | omer    | Dii       | ner    |  |  |
| λ [nm] | f      | λ [nm] | f      | λ [nm] | f       | λ [nm]    | f      |  |  |
| 582.43 | 1.0325 | 678.98 | 2.9698 | 610.49 | 1.1967  | 706.56    | 3.1285 |  |  |
| 498.74 | 0.0036 | 589.00 | 0.0266 | 510.22 | 0.0106  | 616.74    | 0.0878 |  |  |
| 494.13 | 0.0866 | 560.93 | 0.0042 | 497.55 | 0.1647  | 573.69    | 0.0119 |  |  |
| 467.93 | 0.0613 | 526.92 | 0.1415 | 476.08 | 0.0235  | 537.37    | 0.1340 |  |  |
| 401.56 | 0.0863 | 520.57 | 0.0129 | 411.87 | 0.0295  | 520.34    | 0.0078 |  |  |
| 391.19 | 0.0625 | 503.81 | 0.0794 | 407.01 | 0.1483  | 509.78    | 0.0406 |  |  |
| 389.20 | 0.0207 | 500.95 | 0.0049 | 392.77 | 0.0517  | 507.83    | 0.0630 |  |  |
| 379.18 | 0.0108 | 497.48 | 0.0020 |        |         |           |        |  |  |
| 369.22 | 0.0712 | 482.84 | 0.0258 |        |         |           |        |  |  |
| 367.31 | 0.0176 | 475.99 | 0.1479 |        |         |           |        |  |  |

|        |        |        |        | 1 |  |  |
|--------|--------|--------|--------|---|--|--|
| 364.59 | 0.0163 | 456.39 | 0.0075 |   |  |  |
| 361.88 | 0.0078 | 441.26 | 0.0668 |   |  |  |
| 354.07 | 0.1058 | 439.29 | 0.0166 |   |  |  |
| 346.98 | 0.2427 | 430.84 | 0.0404 |   |  |  |
| 344.24 | 0.1405 | 408.21 | 0.0080 |   |  |  |
| 341.47 | 0.1514 | 403.79 | 0.0710 |   |  |  |
| 337.05 | 0.0251 | 399.73 | 0.0351 |   |  |  |
| 334.33 | 0.0784 | 397.81 | 0.0476 |   |  |  |
| 328.55 | 0.0716 | 397.44 | 0.0951 |   |  |  |
| 321.55 | 0.0114 | 394.78 | 0.0740 |   |  |  |
| 319.72 | 0.0008 | 392.84 | 0.0051 |   |  |  |
| 315.13 | 0.0763 | 389.68 | 0.0349 |   |  |  |
| 307.73 | 0.0015 | 388.29 | 0.0034 |   |  |  |
| 303.79 | 0.0081 | 383.04 | 0.0035 |   |  |  |
| 299.84 | 0.0397 | 380.61 | 0.0420 |   |  |  |
| 297.43 | 0.0244 | 377.35 | 0.0362 |   |  |  |
| 293.77 | 0.0169 | 376.32 | 0.1064 |   |  |  |
|        |        | 372.85 | 0.0640 |   |  |  |
|        |        | 371.36 | 0.0202 |   |  |  |
|        |        | 370.83 | 0.0164 |   |  |  |
|        |        | 369.42 | 0.0077 |   |  |  |
|        |        | 367.56 | 0.0034 |   |  |  |
|        |        | 366.48 | 0.0044 |   |  |  |
|        |        | 364.94 | 0.0562 |   |  |  |
|        |        | 362.94 | 0.0642 |   |  |  |
|        |        | 359.22 | 0.0008 |   |  |  |
|        |        | 359.09 | 0.292  |   |  |  |
|        |        | 356.35 | 0.0523 |   |  |  |
|        |        | 355.23 | 0.0375 |   |  |  |
|        |        | 354.46 | 0.0613 |   |  |  |
|        |        | 352.97 | 0.0741 |   |  |  |
|        |        | 351.44 | 0.0021 |   |  |  |
|        |        | 350.33 | 0.0738 |   |  |  |
|        |        | 348.14 | 0.0134 |   |  |  |
|        |        | 346.83 | 0.0697 |   |  |  |
|        |        | 346.64 | 0.0198 |   |  |  |
|        |        | 345.43 | 0.1661 |   |  |  |
| -      |        | 343.56 | 0.0164 |   |  |  |
| -      |        | 342.59 | 0.0370 |   |  |  |
| -      |        | 341.07 | 0.1146 |   |  |  |
|        |        | 338.65 | 0.0173 |   |  |  |
|        |        | 338.24 | 0.0264 |   |  |  |
|        |        | 337.10 | 0.0171 |   |  |  |
|        |        | 336.88 | 0.0977 |   |  |  |
|        |        | 336.70 | 0.0041 |   |  |  |
|        |        | 332.06 | 0.0117 |   |  |  |
|        |        | 331.22 | 0.0159 |   |  |  |
|        |        | 329.62 | 0.0067 |   |  |  |
|        |        | 326.64 | 0.0095 |   |  |  |

|  | 325.54 | 0.0298 |  |  |
|--|--------|--------|--|--|
|  | 325.25 | 0.0033 |  |  |
|  | 323.91 | 0.0208 |  |  |
|  | 323.20 | 0.0048 |  |  |
|  | 322.46 | 0.0040 |  |  |
|  | 321.40 | 0.0145 |  |  |
|  | 320.37 | 0.0133 |  |  |
|  | 319.34 | 0.0543 |  |  |
|  | 317.30 | 0.0210 |  |  |
|  | 315.36 | 0.0049 |  |  |
|  | 314.70 | 0.0061 |  |  |

| PBTDPP |        |        |        |                  |        |        |        |  |  |
|--------|--------|--------|--------|------------------|--------|--------|--------|--|--|
|        | Gas    | Phase  |        | PCM (chloroform) |        |        |        |  |  |
| Mon    | omer   | Dii    | ner    | Monomer          |        | Dii    | ner    |  |  |
| λ [nm] | f      | λ [nm] | f      | λ [nm]           | f      | λ [nm] | f      |  |  |
| 659.96 | 1.1003 | 814.88 | 2.7899 | 668.94           | 1.6031 | 819.12 | 3.2717 |  |  |
| 538.26 | 0.6243 | 685.74 | 0.1686 | 542.51           | 0.2768 | 682.78 | 0.4404 |  |  |
| 499.38 | 0.1144 | 676.11 | 0.2781 | 505.04           | 0.1967 | 663.6  | 0.1411 |  |  |
| 427.44 | 0.0117 | 583.48 | 0.2165 | 430.52           | 0.0028 | 582.89 | 0.3840 |  |  |
| 395.42 | 0.0643 | 572.92 | 0.3515 | 394.71           | 0.0557 | 572.89 | 0.2375 |  |  |
| 378.79 | 0.1421 | 561.12 | 0.5187 | 380.65           | 0.1417 | 556.76 | 0.1832 |  |  |
| 369.85 | 0.0085 | 540.94 | 0.0043 | 372.03           | 0.0062 | 543.70 | 0.0258 |  |  |
| 345.20 | 0.0170 | 520.18 | 0.3110 |                  |        | 521.49 | 0.1080 |  |  |
| 336.02 | 0.1834 | 503.02 | 0.1226 |                  |        | 507.62 | 0.3329 |  |  |
| 332.04 | 0.0027 | 495.50 | 0.0352 |                  |        | 487.90 | 0.0100 |  |  |
|        |        | 486.15 | 0.0004 |                  |        |        |        |  |  |
|        |        | 450.01 | 0.0062 |                  |        |        |        |  |  |
|        |        | 437.26 | 0.0130 |                  |        |        |        |  |  |
|        |        | 427.99 | 0.0039 |                  |        |        |        |  |  |
|        |        | 425.06 | 0.0074 |                  |        |        |        |  |  |
|        |        | 415.20 | 0.0315 |                  |        |        |        |  |  |
|        |        | 404.04 | 0.0523 |                  |        |        |        |  |  |
|        |        | 394.12 | 0.0145 |                  |        |        |        |  |  |
|        |        | 392.19 | 0.1955 |                  |        |        |        |  |  |
|        |        | 384.93 | 0.0942 |                  |        |        |        |  |  |
|        |        | 379.63 | 0.0017 |                  |        |        |        |  |  |
|        |        | 377.19 | 0.0002 |                  |        |        |        |  |  |
|        |        | 373.74 | 0.0585 |                  |        |        |        |  |  |
|        |        | 369.81 | 0.0445 |                  |        |        |        |  |  |
|        |        | 366.88 | 0.006  |                  |        |        |        |  |  |
|        |        | 362.97 | 0.0456 |                  |        |        |        |  |  |
|        |        | 359.57 | 0.1401 |                  |        |        |        |  |  |
|        |        | 346.52 | 0.0188 |                  |        |        |        |  |  |
|        |        | 345.54 | 0.0808 |                  |        |        |        |  |  |
|        |        | 340.84 | 0.2130 |                  |        |        |        |  |  |

| PBBTDPP   |        |         |        |                  |        |         |        |  |
|-----------|--------|---------|--------|------------------|--------|---------|--------|--|
| Gas Phase |        |         |        | PCM (chloroform) |        |         |        |  |
| Mon       | omer   | Dir     | ner    | Monomer Dime     |        | ner     |        |  |
| λ [nm]    | f      | λ [nm]  | f      | λ [nm]           | f      | λ [nm]  | f      |  |
| 1070.31   | 0.6611 | 1422.81 | 2.4606 | 1082.12          | 0.8871 | 1441.69 | 2.7689 |  |
| 772.84    | 0.0918 | 1195.25 | 0.0387 | 752.20           | 0.0707 | 1160.78 | 0.0779 |  |
| 573.88    | 1.0155 | 1042.29 | 0.0004 | 600.03           | 1.0196 | 1033.13 | 0.0032 |  |
| 497.62    | 0.0053 | 929.79  | 0.0709 | 491.86           | 0.0057 | 897.21  | 0.0979 |  |
| 470.39    | 0.0137 | 835.74  | 0.0060 | 471.73           | 0.0391 | 817.55  | 0.0032 |  |
| 461.56    | 0.0214 | 780.63  | 0.1688 | 455.45           | 0.0046 | 756.77  | 0.1378 |  |
| 431.64    | 0.0006 | 733.96  | 0.1067 | 421.69           | 0.0005 | 709.37  | 0.1472 |  |
| 428.75    | 0.0012 | 658.14  | 0.0660 |                  |        |         |        |  |
| 406.68    | 0.0091 | 646.99  | 1.4585 |                  |        |         |        |  |
| 398.24    | 0.1611 | 607.86  | 0.0987 |                  |        |         |        |  |
| 377.91    | 0.0868 | 554.50  | 0.0037 |                  |        |         |        |  |
| 367.69    | 0.0012 | 535.60  | 0.3472 |                  |        |         |        |  |
| 364.42    | 0      | 521.77  | 0.0015 |                  |        |         |        |  |
| 354.36    | 0.0017 | 500.29  | 0.0033 |                  |        |         |        |  |
| 352.52    | 0.0709 | 482.66  | 0.0068 |                  |        |         |        |  |
| 351.53    | 0.0081 | 469.37  | 0.0007 |                  |        |         |        |  |
| 347.13    | 0.2427 | 467.76  | 0.0268 |                  |        |         |        |  |
| 341.41    | 0.0014 | 460.07  | 0.0273 |                  |        |         |        |  |
| 331.87    | 0.0105 | 452.15  | 0.0002 |                  |        |         |        |  |
| 330.44    | 0.0274 | 449.38  | 0.0055 |                  |        |         |        |  |
| 326.86    | 0      | 446.00  | 0.0382 |                  |        |         |        |  |
| 322.74    | 0      | 442.87  | 0.0099 |                  |        |         |        |  |
| 321.72    | 0.0001 | 436.81  | 0.0007 |                  |        |         |        |  |
| 321.30    | 0.2357 | 435.35  | 0.0005 |                  |        |         |        |  |
| 314.17    | 0      | 434.83  | 0.0023 |                  |        |         |        |  |
|           |        | 428.92  | 0.0017 |                  |        |         |        |  |
|           |        | 427.05  | 0.0033 |                  |        |         |        |  |
|           |        | 425.85  | 0.0724 |                  |        |         |        |  |
|           |        | 415.33  | 0.0095 |                  |        |         |        |  |
|           |        | 415.10  | 0.0007 |                  |        |         |        |  |
|           |        | 404.21  | 0.3671 |                  |        |         |        |  |
|           |        | 400.33  | 0.0017 |                  |        |         |        |  |
|           |        | 392.65  | 0.0134 |                  |        |         |        |  |
|           |        | 391.02  | 0.0203 |                  |        |         |        |  |
|           |        | 384.32  | 0.0029 |                  |        |         |        |  |
|           |        | 379.93  | 0.0031 |                  |        |         |        |  |
|           |        | 377.86  | 0.0162 |                  |        |         |        |  |
|           |        | 377.26  | 0.0002 |                  |        |         |        |  |
|           |        | 376.67  | 0.0003 |                  |        |         |        |  |
|           |        | 375.16  | 0.0011 |                  |        |         |        |  |
|           |        | 372.97  | 0      |                  |        |         |        |  |
|           |        | 371.94  | 0.3058 |                  |        |         |        |  |
|           |        | 371.31  | 0      |                  |        |         |        |  |
|           |        | 368.10  | 0.0059 |                  |        |         |        |  |
|           |        | 365.84  | 0.0083 |                  |        |         |        |  |

|  | 363.84 | 0.0030 |  |  |
|--|--------|--------|--|--|
|  | 360.78 | 0.0050 |  |  |
|  | 360.23 | 0.1339 |  |  |
|  | 359.11 | 0.0398 |  |  |
|  | 357.01 | 0      |  |  |
|  | 354.14 | 0      |  |  |
|  | 353.46 | 0.0008 |  |  |
|  | 352.90 | 0.0620 |  |  |
|  | 351.19 | 0.0146 |  |  |
|  | 349.81 | 0.0101 |  |  |

**Table S4.** Calculated monomer LUMO and LUMO+1 energies of the ten computational D–A<sub>1</sub>– D–A<sub>2</sub> polymers compared to the difference in single molecule acceptor energy ( $\Delta E_{LUMO,A}$ ). Sorted by falling  $\Delta E_{LUMO,A}$ .

|                         | PnTPzQBTz | PnTIIBTz | PnTBTBTz | PnTPzQPhQ | PnTPhQBTz |
|-------------------------|-----------|----------|----------|-----------|-----------|
| A <sub>1</sub>          | PzQ       | II       | BT       | PzQ       | PhQ       |
| A <sub>2</sub>          | BTz       | BTz      | BTz      | PhQ       | BTz       |
| E <sub>LUMO</sub> (n=1) | -2.87     | -2.68    | -2.45    | -2.78     | -2.11     |
| $E_{LUMO+1}(n=1)$       | -1.79     | -1.92    | -1.83    | -2.08     | -1.60     |
| E <sub>LUMO</sub> (n=3) | -3.02     | -2.75    | -2.63    | -2.98     | -2.32     |
| $E_{LUMO+1}$ (n=3)      | -2.15     | -2.21    | -2.19    | -2.36     | -2.05     |
| $\Delta E_{LUMO}(A)$    | 1.70      | 1.55     | 1.17     | 0.97      | 0.73      |



**Figure S1.** Calculated D–A<sub>1</sub>–D–A<sub>2</sub> comonomer LUMO energy *vs.* LUMO energy of the strongest acceptor (a). Calculated maximum absorption coefficient of the second absorption feature *vs.* difference in LUMO energy between the two acceptor units (b). Difference between LUMO and LUMO+1 in the D–A<sub>1</sub>–D–A<sub>2</sub> comonomers *vs.* difference in LUMO energy between the two acceptor units (c).



**Figure S2.** HOMOs of the 10 computational  $D-A_1-D-A_2$  copolymers. All are well delocalized over the backbones.



**Figure S3.** Spectra of PnTPzQPhQ, PnTBTBTz, and PnTIIBTz compared to their corresponding D–A polymer spectra. PTI1 exhibits a shorter wavelength peak than PTBTz, even though isoindigo has a lower LUMO than benzotriazole. This is rationalized from the extremely planar structure of PTBTz, whereas PTI1 has a considerable dihedral angle between T and II, weakening the conjugation.



**Figure S4.** The HOMO and LUMO+2 orbitals of P3TQTIF and PTIIBTzF. All show some delocalization, but LUMO+2 are for both polymers strongest on the donors.

Synthesis of PTIIBTzF



Scheme 1. Synthetic route of the polymer PTIIBTzF.

All reagents and starting materials were purchased from commercial sources and used without further purification, unless otherwise noted. The monomers (*E*)-1,1'-bis(2-hexyldecyl)-6,6'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[3,3'-biindolinylidene]-2,2'-dione (**M1**)<sup>1</sup> and 4,7-bis(5-bromothiophen-2-yl)-2-(2-butyloctyl)-5,6-difluoro-2H-benzo[d][1,2,3]triazole (**M2**)<sup>2</sup> were prepared according to the literature methods.

In a dry 25 mL flask, **M1** (193 mg, 0.2 mmol), M2 (129 mg, 0.2 mmol), Aliquat 336 (3 drops), tris(dibenzylideneacetone)dipalladium(0)  $[Pd_2(dba)_3]$  (3.0 mg), tri(*o*-tolyl)phosphine  $[P(o-Tol)_3]$  (6.0 mg) and K<sub>3</sub>PO<sub>4</sub> (500 mg) were dissolved in a mixture of degassed toluene (6 mL) and deionized water (1 mL). The mixture was vigorously stirred at 100 °C for 18 h under nitrogen.

After that, it was cooled down and poured into acetone. The polymer was collected by filtration through 0.45  $\mu$ m Teflon filter and Soxhlet-extracted first with diethyl ether, and then with chloroform. The chloroform solution was passed a short column and precipitated into acetone. Finally, the polymer was collected by filtration using a 0.45  $\mu$ m Teflon filter and dried under vacuum at 40 °C overnight (100 mg, 42%). *Mn* = 26.4 kDa, PDI = 1.9.

Supplementary information references

- 1 W. Sun, Z. Ma, D. Dang, W. Zhu, M. R. Andersson, F. Zhang and E. Wang, *J. Mater. Chem. A*, 2013, **1**, 11141–11144.
- 2S. C. Price, A. C. Stuart, L. Yang, H. Zhou and W. You, J. Am. Chem. Soc., 2011, 133, 4625–4631.