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I. MULTISCALE MODELING OF THE
INTERACTIONS BETWEEN THE ELECTRON

AND NUCLEAR SPINS

A. Two-region treatment of the dipolar interaction

Atomically detailed descriptions like molecular dynam-
ics (MD) simulations, while providing a realistic model of
the liquid structure and dynamics in the neighborhood of
the polarizing agent, are necessarily limited in spatial ex-
tent. Due to the long-range nature of the dipolar interac-
tion this may be a serious shortcoming when calculating
the dipolar spectral density function (SDF). In contrast,
the analytically tractable model of diffusing hard spheri-
cal molecules with centered spins (HSCS model)1,2 easily
extends to infinite distances, but may be a poor model
of the liquid structure and dynamics in the vicinity of
the polarizing agent. Such details are increasingly im-
portant for the Overhauser dynamic nuclear polarization
(ODNP) at high magnetic fields, which require substan-
tial modulation of the dipolar interaction at short time
scales corresponding to frequencies of hundreds of GHz.

Observing that the precise shapes of the molecules and
the precise locations of the spins on these molecules are
progressively less important with increasing separation
between the electron and nuclear spins, Fries et al. have
proposed a multiscale approach for calculating the dipo-
lar SDF by integrating MD simulations at short spin-spin
distances with the hydrodynamic HSCS model at large
distances.3 The idea is to separate the space around the
free radical into near and far regions by an imaginary,
spherical boundary of radius d during the analysis of the
MD simulations (Fig. S1). The time-correlation function
(TCF) of the dipolar interaction is then written as a sum
of four parts:3

Cdip(t) = CNN(t) + CNF(t) + CFN(t) + CFF(t). (S1)

Here, CNF(t) accounts for the contribution of molecules
that are in the near region (N) at some time and are
in the far region (F) time t later. Similarly, CNN(t) is
the contribution of molecules that are in the near region
both at the beginning and at the end of a time interval of
duration t. (Transient visits to F are allowed as long as
the molecule is back in N at the end of the time interval.)

The proposal of ref. 3 is to estimate the TCFs with at
least one subscript N using an atomistic model, and to
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FIG. S1. Partitioning of the space around the polarizing agent
(dark circle) into near (r < d) and far (r > d) regions on the
basis of the distance r between the free radical and the solvent
molecule.3

calculate CFF(t) using an analytical expression derived
from the HSCS model. In this way, both the molecular
detail and the contribution of many distant molecules is
taken care of. Because CFN(t) = CNF(t),3 what is to be
calculated can be summarized as

Cdip(t) = CMD
NN (t) + 2CMD

NF (t) + CHSCS
FF (t), (S2)

where the superscripts indicate the model to be employed
for the calculation of the respective contribution to the
dipolar TCF. Taking the one-sided Fourier transform [de-
fined in eqn (8) of the main text] of both sides of (S2) pro-
duces an equivalent decomposition for the dipolar SDF:

J(ω) = JMD
NN (ω) + 2JMD

NF (ω) + JHSCS
FF (ω). (S3)

While the analysis of the MD trajectories results in an es-
timate of the TCFs, the analytical solution of the HSCS
model leads directly to the SDFs. Because the calcula-
tion of the relaxation rates σSI and ρSI according to Eqs.
(5) and (6) in the main text requires J(ω), the TCFs
obtained from the MD trajectories eventually need to be
Fourier-transformed numerically and used in (S3).

Attempts to employ the outlined approach in practice,
however, face the following problem. According to (S2),
the CNF(t) part of the dipolar TCF should be estimated
from MD simulations because the contributing molecular
trajectories start in the near region. On the other hand,
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FIG. S2. Partitioning of the space around the polarizing agent
(dark circle) into near (r < d) and mid (d < r < a) regions,
where the boundary r = a is absorbing.4

the contributing trajectories end in the far region, which
extends well beyond the finite spatial dimensions of the
MD simulation box all the way to infinity. While the ana-
lytical HSCS model is the method of choice when dealing
with this far region, it is not expected to be appropriate
for handling the near region. Thus, both the atomically
detailed and the hydrodynamic descriptions appear to
be inappropriate for one of the regions involved in the
calculation of CNF(t).

In an effort to address this issue, and thus devise a way
of combining the MD simulations with the HSCS model,
the finite size of the MD simulation box was explicitly
acknowledged in ref. 4. This was done by introducing a
spherical outer boundary of radius a that was taken as
absorbing, i.e., once a molecule exits the space enclosed
by this boundary it is imagined to disappear during the
estimation of TCFs from the MD trajectories (Fig. S2).
As a result, an intermediate region (M) spanning dis-
tances d < r < a from the free radical is defined. In
contrast to CNF(t) whose estimation from the MD sim-
ulations is problematic due to the infinite spatial extent
of region F, CNM(t) can be estimated faithfully from the
MD simulations because both regions defined in Fig. S2
are finite in size.

The numerical Fourier transform (FT) of the estimated
CMD

NM (t) produces an MD estimate of JNM(ω), the near-
intermediate part of the dipolar SDF. [This is represented
by the first step in (S4) below.] Thus, we have managed
to calculate JNM(ω) from the MD simulations. However,
what is actually needed in (S3) is JNF(ω) for an infinitely
large region F. A prescription for calculating JNF(ω) from
CMD

NM (t) was proposed in ref. 4. It may be depicted as
follows:

CMD
NM (t)

FT→ JMD
NM (ω)

fit→ JHSCSa
NM (ω)

unfold→ JHSCS
NF (ω). (S4)

The first step in (S4) was described above. The re-
maining two steps are performed in order to make the
transition from JNM(ω) to JNF(ω), i.e., to “unfold” the

intermediate region to infinity. First, the MD estimate
JMD

NM (ω) is fit by an analytical expression for the near-
mid SDF obtained from a finite version of the HSCS
model with an absorbing boundary at r = a (denoted by
HSCSa). This model with absorbing outer boundary has
been examined previously,5 but was devised and solved
independently in ref. 4 with the purpose of bridging the
gap between MD simulations and the HSCS model. The
analytical expression of JHSCSa

NM (ω) contains the constants
d and a that were used in the analysis of the MD simu-
lations, as well as the parameters b and D that are part
of the original HSCS model.

In the last step of (S4), the “unfolding” of JHSCSa
NM (ω)

to infinite space is achieved by calculating the near-far
dipolar SDF using the analytical expression of JNF(ω),
derived from the original HSCS model,3 with the best-
fitting parameters b and D (and the constant d). This
step is essentially the limit

lim
a→∞

JHSCSa
NM (ω)→ JHSCS

NF (ω). (S5)

As a result, JNF(ω) obtained in this way is an HSCS-
expanded version of the finite-size MD estimate, which
may be denoted as JMD→HSCS

NF (ω).
On first sight, the estimation of the near-near TCF

from MD trajectories should not suffer from the difficulty
outlined for CNF(t). After all, the trajectory fragments
that contribute to CNN(t) start and end in the near region
which, unlike F, is finite in extent to begin with (Fig. S1).
However, as mentioned before, when calculating CNN(t)
only the endpoints of the trajectory fragments of dura-
tion t are required to be in region N. As long as this con-
dition is satisfied, in between the trajectories may visit
region F one or more times. Faithfully sampling these
transient visits to an infinitely large spatial region poses
a similar problem to finite-size MD simulations, although
the associated error in the estimate of CNN(t) is expected
to be much less than that of CNF(t). Next, we describe
how the prescription followed to extend the MD estimate
of JNM(ω) to infinite size was adapted to the “unfolding”
of the near-near SDF.

Because the unfolding from finite to infinite size is
achieved through the HSCS model, in the analysis of
the NN part of the dipolar TCF we attempt to sepa-
rate the HSCS-like dynamics from the actual dynamics.
This is done by calculating two different MD estimates
for CNN(t), again treating the boundary at r = a as ab-
sorbing. In one of them, to be denoted by CMD

NN (t), the
actual atomic positions are used as proxies of the spin
locations. In the other, to be denoted by CCOM

NN (t), the
electron and nuclear spins are imagined to be located at
the centers of mass (COM) of the free radical and solvent
molecules, respectively. This last choice is expected to
reflect the centered-spins (CS) assumption of the HSCS
model. The difference between these two estimates re-
flects the deviation of the actual near-near TCF from its
COM approximation:

CMD
NN (t) = Cdev

NN (t) + CCOM
NN (t). (S6)
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The unfolding is performed only for the COM part fol-
lowing the same steps as for the NF contribution [cf.
(S4)]:

CCOM
NN (t)

FT→ JCOM
NN (ω)

fit→ JHSCSa
NN (ω)

unfold→ JHSCS
NN (ω).

(S7)
Again, because the resulting JHSCS

NN (ω) is an HSCS-
expanded version of the finite-size COM estimate, it may
be denoted as JCOM→HSCS

NN (ω).
At this point let us comment on the apparent use of dif-

ferent prescriptions when unfolding the NM and NN con-
tributions to the dipolar SDF [cf. (S4) and (S7)]. While
for NN we distinguished between the COM and the actual
TCFs, this was not done for NM. The reason lies in ob-
servations from our previous work that, for a sufficiently
large d, CMD

NM (t) ≈ CCOM
NM (t).6,7 (This is also seen in Figs.

S5b and S6b where the actual and COM estimates of the
SDFs coincide.) In other words, for d larger than several
times the molecular radii, the NM contribution to the
dipolar TCF calculated with the spins assumed to be at
the molecular COMs is practically the same as the one
calculated with the spins at their actual positions.8 Thus,
for NM the deviation from the COM estimate is equal to
zero. Therefore, instead of CMD

NM (t) in (S4), which is cal-
culated using the actual positions of the spins, we might
as well write

CCOM
NM (t)

FT→ JCOM
NM (ω)

fit→ JHSCSa
NM (ω)

unfold→ JHSCS
NF (ω)

(S8)
without affecting the final estimate of JHSCS

NF (ω). Now
(S8) and (S7) look identical.

As mentioned above, the “unfolding” of JNN(ω) is nec-
essary because some trajectory fragments of length t that
start and end in region N do visit region F in between.
Such visits, however, are not entirely missed by the finite-
size MD simulations. In fact, all excursions out of region
N that remain within r < a, i.e., are limited to region M
in Fig. S2, are properly accounted for in the MD simu-
lations. It is only rare excursions from r < d to r > a
and back to r < d within time t that are made up for
by the unfolding procedure. The unfolding step relies
on the HSCS model to predict the contribution of ex-
cursions from N to F and back to N on the basis of the
contribution of the excursions from N to M and back
that are actually observed in the MD trajectories. Thus,
in a sense, the HSCS model extrapolates from the (ob-
served) N→M→N contribution to the (partly observed)
N→F→N contribution.

We, therefore, realize two things. First, for a suffi-
ciently large intermediate region (M) the MD estimate
of JNN(ω) would be practically unchanged by the unfold-
ing. Second, because the correction is due to trajectory
fragments that go outside region N, for d that is several
times larger than the molecular radii, the magnitude of
the correction should not be very sensitive to the actual
location of the spins. Thus, it should be possible to calcu-
late the finite-size correction from CCOM

NN (t), which meets
the CS assumption of the HSCS model. In light of these
two observations, we calculate the finite-size correction

to NN by unfolding only CCOM
NN (t) in (S6) and including

the contribution of Cdev
NN (t) as such after calculating its

Fourier transform

Cdev
NN (t)

FT→ Jdev
NN (ω). (S9)

At the end, the dipolar SDF is obtained by adding all
the separate pieces together:

J(ω) = Jdev
NN (ω) + JCOM→HSCS

NN (ω)

+ 2JMD→HSCS
NF (ω) + JHSCS

FF (ω).
(S10)

In practice, we write the first two terms on the right-
hand side of (S10) as

Jdev
NN (ω) + JCOM→HSCS

NN (ω) = JMD
NN (ω) + ∆fs

NN(ω), (S11)

where the finite-size correction to JMD
NN (ω) was defined as

∆fs
NN(ω) ≡ JCOM→HSCS

NN (ω)− JCOM
NN (ω). (S12)

With the help of the fit in (S7) this correction can be
calculated analytically as

∆fs
NN(ω) = JHSCS

NN (ω)− JHSCSa
NN (ω). (S13)

To obtain JMD
NN (ω), we perform a multiexponential fit

to the NN part of the dipolar TCF calculated from the
MD trajectories using the actual locations of the spins:

CMD
NN (t) =

∑
i

aie
−t/τi . (S14)

Using the fitting parameters ai and τi the desired SDF
is calculated analytically [see Eq. (8) in the main text]:

JMD
NN (ω) =

2π

5
(δIS)2

∑
i

aiτi
1 + (ωτi)2

. (S15)

B. Additional quantum region for the scalar
interaction

Unlike the dipolar interaction, the scalar interaction
is short-ranged. Therefore, for the scalar interaction,
any reasonably-sized MD simulation box should auto-
matically be “sufficiently large” such that applying the
two-region unfolding procedure described above becomes
unnecessary. Thus, it should be possible to base the es-
timate of Ciso(t) on the scalar TCF calculated from the
MD trajectories as such without any finite-size correc-
tion.

The Fermi contact depends on the electron spin den-
sity at the positions of the nuclei of interest. While the
nuclear positions can be obtained from the MD snap-
shots, the determination of the spatial distribution of
the electron spin density requires genuinely quantum me-
chanical calculations. For the treatment of the scalar in-
teraction, therefore, we introduced a quantum region in
which the free radical and a few solvent molecules around
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FIG. S3. A schematic depiction of the quantum region (red)
containing only a few solvent molecules closest to the oxygen
atom of the nitroxide free radical. The scalar interaction is
computed with ab initio calculations of the molecules in the
quantum region as extracted from the MD snapshots. Thus,
scalar SDF is obtained by combining the MD simulations with
quantum mechanical calculations (MD + QM). The other two
regions are necessary for the calculation of the dipolar SDF.

it are modeled in greater (quantal) detail than available
from the (classical) MD simulations (Fig. S3). Differently
from the near and mid regions introduced previously for
the analysis of the dipolar interaction, the quantum re-
gion was not defined by a fixed distance from the cen-
ter of mass of the free radical. Instead, the six solvent
molecules whose centers of mass were closest to the ni-
troxide oxygen atom, as well as the free radical itself,
were included in the quantum region. (The choice of six
molecules was based on the analysis given in Fig. 2 of
the main text.) As a result, in every MD snapshot the
spatial extent of the quantum region is slightly different
because of the motions of the liquid molecules.9

With the quantum region defined as explained, the
scalar interaction of a given nucleus with the electron
spin is either taken from the ab initio calculation if the
nucleus is in the quantum region, or is automatically as-
signed as zero if the nucleus is outside the quantum re-
gion. That the scalar interaction does drop to zero even
for molecules in the quantum region can be seen from
the Aiso values of distant nuclei included in the ab initio
calculation (Fig. 3 in the main text). As a result, Aiso

values were obtained as a function of time for every pro-
ton and carbon nucleus in the MD simulation box. A
30 ps fragment for the CH3

nucleus that was observed to
experience maximal positive Fermi contact is shown in
Fig. S4.

Scalar TCFs for the proton and carbon nuclei were
obtained according to Eq. (9) in the main text. These
were then fit to a sum of exponential decays

Ciso(t) =
∑
i

aie
−t/τi , (S16)

which were analytically Fourier-transformed according to
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FIG. S4. Fermi contact values of the CH3 nucleus as a func-
tion of time. The selected time window includes the point
with observed maximum positive Aiso value (indicated with
asterisk in Fig. 4a of the main text).

Eq. (10) in the main text to obtain the scalar SDF:

K(ω) =
∑
i

aiτi
1 + (ωτi)2

. (S17)

II. ANALYSIS

A. Dipolar interaction

In the following we used d = 2.5 nm and a = 3.4 nm,
which were employed in our previous analysis of TEM-
POL in acetone.7 Using the above strategy, dipolar SDFs
were calculated for the CH3

and CO atoms of acetone.
The analysis was also repeated for the protons of ace-
tone, which had been analyzed before.7

1. Carbon-electron dipolar interaction

The NN and NM carbon-electron SDFs calculated from
the MD trajectories and the best fits to the COM SDFs
with the finite-space HSCS model (HSCSa) are shown in
Fig. S5. Note that, with our choice of d and a, the actual
spin positions on the molecules become immaterial for
the MD estimate of JNM(ω). The “distance of closest
approach,” b, and the coefficient of relative translational
diffusion, D, that produce the best fits with the HSCSa
model are given in the NN and NM columns of Table
S1. These parameters are identical to those reported in
Table 4 of ref. 7 (for 1 TEMPOL) since they correspond
to the same center-of-mass positions. The values in the
FF column of Table S1, which are also identical to the
ones reported in Table 4 of ref. 7, are not determined
from fits to the MD SDFs. Instead, D is obtained as the
sum of the TEMPOL and acetone diffusion coefficients
as deduced from the MD simulations. The parameter b,
intended to represent the distance of closest approach of
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FIG. S5. (a) NN and (b) NM dipolar SDFs between the elec-
tron spin and the indicated carbon nuclei of acetone. SDFs
of CH3 (green) and CO (blue) are calculated from the actual
positions of the nuclear spins. COM SDFs (black) are cal-
culated pretending that the electron and nuclear spins are at
the centers of mass of the TEMPOL and acetone molecules.
Best fits to the latter with the HSCSa model are shown with
dashed lines.

TABLE S1. The parameters b and D obtained by fitting the
COM dipolar SDFs in Fig. S5 with the analytical expressions
from the finite-size (absorbing) HSCS model.

NN NM FF
b/nm 0.45 0.40 0.51

D/nm2ns−1 5.22 6.16 8.11

the molecules, is taken as the value of r at which the
radial distribution function g(r) equals 0.5. (For a plot
of the RDF see ref. 7.)

The multi-exponential fit parameters for the NN part
of the dipolar TCFs of the three nuclei [see (S14)] are
given in Table S2. The fits were performed with the com-
mercial software package MATLAB.10 When the num-
bers in the proton columns are compared with the previ-
ously reported values for acetone (Table S7 of ref. 7) small
numerical differences are observed.11 The reason is that
the fits in our previous work were performed with the free
visualization software Grace.12 The numerical differences
in the fitting parameters, however, have a negligible ef-
fect on the final results, as revealed by the comparison of
the proton ODNP coupling factors reported in Table 2 of
the main text and in Table 5 of ref. 7 (values for acetone
with 1 TEMPOL).

TABLE S2. Multi-exponential fit parameters for the near-
near part of the dipolar interaction between the electron and
nuclear spins of CH3 , CO and H .

CH3 CO H
ai/nm−3 τi/ps ai/nm−3 τi/ps ai/nm−3 τi/ps

1.109 0.530 0.472 0.592 2.807 0.242
1.869 2.770 1.213 3.612 2.766 1.696
2.296 10.89 2.126 11.45 2.609 9.231
0.456 41.02 0.415 42.56 0.590 36.62

Frequency [GHz]

10
0

10
1

10
2

10
3

J  N
N

[n
m

3
 n

s
-1

]

×10
-14

0

1

2

3

(a)

J
 MD

 C
H

3

J
 MD

 C
O

J
 MD

COM

J
 HSCSa

Frequency [GHz]

10
0

10
1

10
2

10
3

J  N
M

[n
m

3
 n

s
-1

]

×10
-16

-1

0

1

2

3

(b)

FIG. S6. (a) NN and (b) NM dipolar SDFs between a pro-
ton spin and the indicated carbon nuclei of acetone. SDFs
of CH3 (green) and CO (blue) are calculated from the actual
positions of the nuclear spins. COM SDFs (black) are calcu-
lated pretending that the proton and carbon spins are at the
centers of mass of their acetone molecules. Best fits to the
latter with the HSCSa model are shown with dashed lines.

2. Carbon-proton dipolar interaction

The carbon-proton dipolar SDF is necessary to quan-
tify the three-spin effect on the 13C polarization. In this
case, the protocol to calculate the electron-nuclear dipo-
lar SDF was applied in the same manner, except that one
randomly chosen acetone molecule was placed at the cen-
ter of the coordinate system defining the regions in Fig.
S2, and the distance vectors from a proton on this acetone
to carbon atoms on the remaining acetone molecules were
considered. The resulting NN and NM dipolar SDFs are
given in Fig. S6. Note that the raw correlation functions
are now multiplied by the square of (µ0/4π)~γCγH, which
leads to orders of magnitude smaller SDFs compared to
those in Fig. S5.

The b and D parameters obtained from the fit to the
COM dipolar SDFs with the HSCSa model are given in
the NN and NM columns of Table S3. These values are
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TABLE S3. Parameters b and D from the fit of the carbon-
proton COM dipolar SDFs with the HSCSa model as shown
in Fig. S6.

NN NM FF
b/nm 0.38 0.40 0.42

D/nm2ns−1 7.1 7.9 10.4

TABLE S4. Multi-exponential fit parameters for the NN part
of the dipolar TCFs between proton and carbon nuclei.

CH3 CO

ai/nm−3 τi/ps ai/nm−3 τi/ps
25.337 0.001 48.385 0.221
82.892 0.618 55.205 1.178
57.934 4.609 56.822 5.948
13.307 22.19 9.196 27.14

the “distance of closest approach” and the coefficients of
relative translational diffusion of two acetone molecules.
They differ from the values in Table S1, which are for
TEMPOL and acetone. The FF value of D is equal to
twice the diffusion coefficient of acetone. The FF value
of b is read from the acetone-acetone radical distribution
function (see Fig. 2 of ref. 7).

The NN part of the carbon-proton dipolar TCFs were
fit to a sum of 4 exponential functions as shown in (S14).
The resulting magnitude and decay timescales are given
in Table S4. Note that, the way Cdip(t) has been de-
fined in Eq. (7) of the main text, its value at t = 0 re-
flects purely geometrical information. The larger sums∑4
i=1 ai in Table S4 compared to the same sums in Ta-

ble S2 indicate that the protons of acetone come closer
to the carbons of other acetone molecules compared to
the unpaired electron of TEMPOL.

B. Scalar interaction

Scalar TCFs were calculated from all the Aiso time
series, a fragment of one of which is shown in Fig. S4.
Coordinates were taken from two, 1 ns-long segments
of the MD simulations, whose snapshots were recorded
with time step ∆t = 0.2 ps. This implies a frequency
bandwidth of F = 5000 GHz. The scalar TCFs were
calculated for a total duration of T = 500 ps, which cor-
responds to a frequency resolution of ∆f = 1 GHz.

The calculated scalar TCFs for both segments are
shown in Fig. S7. Their averages are given in Fig. 5 of the
main text. The 1 ns-long MD segments are observed to
lead to almost identical scalar TCFs, demonstrating the
statistical convergence of Ciso(t) estimated by averaging
over the two fragments.

These TCFs and their averages were fit to a sum of 4
decaying exponential functions according to (S16). The
fits to the separate segments are plotted with dashed
black lines in Fig. S7. The fits to the average TCFs
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FIG. S7. TCFs for scalar coupling. Fermi contacts are cal-
culated from two different fragments of the MD simulations.
They were plotted as straight and their fits are in dashed lines.

are shown with dashed lines in Fig. 5 of the main text.
The magnitudes and decay rates of these exponentials
are listed in Table S5.

TABLE S5. Multi-exponential fit parameters ai (10−8

nm3ns−2) and τi (ps) of the scalar TCFs of the two differ-
ent fragments and their average.

CH3 CO H
ai τi ai τi ai τi

fi
rs

t

3.004 0.070 0.162 0.008 0.433 0.050
1.336 0.712 0.092 0.213 0.047 0.403
0.524 4.691 0.020 2.544 0.025 4.252
0.088 37.77 0.002 43.25 0.003 38.14

CH3 CO H
ai τi ai τi ai τi

se
co

n
d 2.806 0.070 0.151 0.008 0.408 0.050

1.276 0.560 0.086 0.185 0.063 0.401
0.574 3.986 0.015 3.756 0.023 4.181
0.151 28.92 0.002 40.00 0.006 30.00

CH3 CO H
ai τi ai τi ai τi

av
er

a
g
e 2.851 0.070 0.162 0.007 0.425 0.050

1.295 0.544 0.087 0.236 0.050 0.404
0.618 4.035 0.012 3.851 0.025 4.351
0.116 33.76 0.001 60.85 0.004 33.85

ODNP coupling factors were calculated using the
scalar SDFs obtained separately from the two 1 ns-long
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TABLE S6. DNP coupling factors (%) for 13C and 1H at the
specified electron/proton Larmour frequencies (GHz/MHz)
calculated using the scalar SDFs estimated separately from
the first (1) and second (2) trajectory fragments.

9.7/15 34/50 94/140 260/400 460/700

CH3

1 21.9 7.0 −0.2 −1.8 −1.5
2 21.4 7.3 0.3 −1.7 −1.5

CO
1 34.1 15.0 4.2 0.9 0.3
2 34.1 15.0 4.2 0.9 0.3

H
1 36.2 19.9 9.36 3.47 2.02
2 36.2 19.9 9.36 3.47 2.02

trajectory fragments (Table S6). Identical values are ob-
tained for H and CO, for which the dipolar interaction
dominates over the scalar interaction. In the case of CH3

,
which experiences strongest scalar interaction among the
three nuclei, the estimates based on the separate trajec-
tory fragments show numerical differences. The magni-
tude of this difference should give a feeling of the statisti-
cal uncertainty associated with the numbers reported in
Table 3 of the main text, which were obtained using the
estimate of the scalar SDF from the average of the two
trajectory fragments.
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