ELECTRONIC SUPPLEMENTARY INFORMATION

S...O Chalcogen Bonding in Sulfa Drugs: Insights from Multipole Charge Density and X-ray Wavefunction of Acetazolamide

Sajesh P. Thomas, Dylan Jayatilaka and T. N. Guru Row

1. Intermolecular interaction energy estimation from CrystalExplorer

The interaction energy estimates from *CrystalExplorer* uses the unperturbed gas phase molecular wavefunction calculated at B3LYP/6-31G(d,p) level (Figure S1 and Table S1). The method applies space group symmetry operations on the density matrix corresponding to this molecular wave function to generate symmetry related neighbors and calculate the interaction energy. Further, the electrostatic terms are appended by terms to obtain the total interaction energy. Scale factors were obtained for the electrostatic, repulsion, dispersion, and polarization terms separately from a fitting the interaction energy values to large number of accurate interaction energy values reported in the literature (for more details of the calculation, see: M. J. Turner, S. Grabowsky, D. Jayatilaka and M. A. Spackman, *J. Phys. Chem. Lett.*, 2014, **5**, 4249). These interaction energy values were used to generate the energy frameworks (Figure S2), which represent the topology of intermolecular interactions in terms of their relative strengths (for details of energy frameworks, see: M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka and M. A. Spackman, *Chem Commun*, 2015, **51**, 3735).

Figure S1. Colour coding based on the interaction energies of various neighbors around a central molecule.

Symop	Dist.	Wavefunc.	Coul.	Polariz.	Disp.	Repul.	Total								
-x, -y, -z	6.85	B3LYP/6-31G(d,p)	-125.0	-29.7	-26.3	140.3	-94.1								
x, y, z	5.28	B3LYP/6-31G(d,p)	-6.9	-5.1	-29.2	22.4	-22.5								
-x, -y, -z	8.06	B3LYP/6-31G(d,p)	6.5	-0.8	-2.7	0.0	4.1	Soolo Footor Kow							
x, y, z	11.46	B3LYP/6-31G(d,p)	-4.5	-1.2	-5.3	2.3	-8.8	Ke = electrostatic energy							
-x, -y, -z	13.16	B3LYP/6-31G(d,p)	2.6	-0.9	-6.4	6.0	0.3	Kp = polarization energy Kd = dispersion energy Kr = repulsion energy							
-x, -y, -z	7.85	B3LYP/6-31G(d,p)	-61.3	-13.0	-16.9	48.7	-60.3								
-x, -y, -z	4.60	B3LYP/6-31G(d,p)	-40.5	-8.6	-38.5	27.0	-66.0								
x, y, z	9.35	B3LYP/6-31G(d,p)	13.1	-2.9	-9.7	4.8	6.3	Energy Medel	Kd	K.					
-x, -y, -z	4.81	B3LYP/6-31G(d,p)	-94.0	-19.7	-34.9	91.3	-90.0	Energy Model	ĸe	кр	Kū	K r			
-x, -y, -z	10.74	B3LYP/6-31G(d,p)	-13.9	-1.9	-6.9	5.4	-18.8	HF/3-21G	0.882	0.593	0.852	0.681			
-x, -y, -z	10.37	B3LYP/6-31G(d,p)	10.1	-1.4	-2.6	0.7	7.9	MP2/6-31G(d,p)	1.027	0.722	0.842	0.605			
-x, -y, -z	6.09	B3LYP/6-31G(d,p)	6.4	-2.0	-7.7	3.1	0.7	B3LYP/6-31G(d,p)	1.063	0.756	0.843	0.595			

Table S1. The interaction energies (kJ/mol) of various neighbors around a central molecule, and the scale factors used.

Figure S2. Energy framework based on electrostatic (red) and dispersion (green) components and net interaction energies (blue) viewed down different directions.

Figure S3. 3D residual density maps generated from XWR, isosurfaces plotted at +/- 0.1 eÅ⁻³(blue for peaks and red for holes).

		Electron density at BCP, $\rho(eÅ^{-3})$			Laplacian $\nabla^2 \rho$ (eÅ ⁻⁵)			
		MM	XWR	Gas phase	ММ	XWR	Gas phase	
1	S(1)-C(1)	1.376	1.464	1.423	-4.916	-2.924	- 2.456	
2	S(1)-C(2)	1.444	1.434	1.444	-6.374	-2.630	-2.631	
3	S(2)-O(2)	2.304	2.14	2.121	-2.084	5.270	5.463	
4	S(2)-O(3)	2.392	2.13	2.117	-1.973	5.470	5.297	
5	S(2)-N(1)	1.866	1.77	1.729	-16.781	-2.702	-2.023	
6	S(2)-C(1)	1.412	1.458	1.448	-7.927	-3.016	-2.870	
7	O(1)-C(3)	2.846	2.74	2.756	-26.754	-3.000	-3.448	
8	N(1)-H(1N)	2.123	2.286	2.293	-29.780	-11.22	-10.266	
9	N(1)-H(2N)	2.311	2.33	2.341	-31.858	-11.70	-10.995	
10	N(2)-N(3)	2.359	2.444	2.423	-4.469	-4.716	-4.417	
11	N(2)-C(1)	2.616	2.562	2.562	-27.898	-8.526	-7.382	
12	N(3)-C(2)	2.544	2.508	2.509	-26.760	-8.524	-7.325	
13	N(4)-C(2)	2.250	2.21	2.176	-19.620	-6.484	-6.205	
14	N(4)-C(3)	2.223	2.196	2.174	-25.824	-6.722	-6.110	
15	N(4)-H(4N)	2.109	2.168	2.178	-27.310	-10.788	-9.410	
16	C(3)-C(4)	1.822	1.788	1.780	-14.308	-4.228	-4.124	
17	C(4)-H(4A)	1.771	1.914	1.921	-14.592	-5.924	-5.958	
18	C(4)-H(4B)	1.793	1.878	1.887	-16.382	-5.724	-5.713	

Table S2. Topological parameters for intramolecular covalent bonds obtained from experimental multipole model (MM), X-ray wavefunction refinement (XWR), and gas phase calculations at BLYP/def2TZVP level.

19	C(4)-H(4C)	1.776	1.856	1.844	-15.860	-5.620	-5.477
----	------------	-------	-------	-------	---------	--------	--------

Atoma	a Atom	n_a	n_b	n_ab	s_ab Bon	nd Index %	Covalency	
S1	O1	16.946195	9.367678	26.274396	0.039476	0.205785	100.000000	
C4	C3	9.056835	8.250822	15.855564	1.452093	1.184160	92.385258	
N2	C1	8.775620	8.506082	15.397128	1.884574	1.738339	99.433827	
N3	C2	8.854447	8.435623	15.525990	1.764081	1.609201	98.645582	
N3	N2	8.854447	8.775620	16.205594	1.424473	1.361051	99.910951	
N4	C2	9.201806	8.435623	16.109547	1.527883	1.354834	91.916695	
N4	C3	9.201806	8.250822	15.948798	1.503831	1.409426	89.880724	
01	C3	9.367678	8.250822	15.834204	1.784295	1.812352	90.573513	
S 1	C1	16.946195	8.506082	24.141269	1.311008	1.226545	98.770384	
S 1	C2	16.946195	8.435623	24.028350	1.353468	1.273806	98.499784	
S2	N1	16.524878	9.271885	24.776219	1.020545	1.015312	89.052946	
S2	O2	16.524878	9.384754	24.702533	1.207098	1.310722	90.831467	
S2	O3	16.524878	9.399119	24.719858	1.204139	1.308932	90.331693	
H1N	N1	1.428112	9.271885	9.406806	1.293192	0.951850	87.530083	
H2N	N1	1.424591	9.271885	9.410688	1.285789	0.951491	87.675217	
H4A	C3	1.595832	8.250822	9.804439	0.042215	0.104576	50.187547	
H4A	C4	1.595832	9.056835	9.238139	1.414528	0.947780	95.629512	
H4B	C4	1.614619	9.056835	9.241046	1.430408	0.946300	96.113780	
H4C	C4	1.594069	9.056835	9.224355	1.426549	0.948823	95.401846	
H4N	C2	1.394739	8.435623	9.780486	0.049876	0.154613	24.226672	
H4N	C3	1.394739	8.250822	9.599515	0.046046	0.161260	20.957587	
H4N	N4	1.394739	9.201806	9.370506	1.226039	0.934561	85.731724	

Table S3. Roby bond indices and populations obtained from XWR, for various bonds in AZM.