Supporting Information

Effect of Cation Substitution on Structural Transition: Synthesis,

Characterization and Theoretical Studies of NaCa₄B₃O₉, NaCaBO₃,

NaSrBO₃ and Li₄CaB₂O₆

Yun Yang,^a Xin Su,^{a,b} Shilie Pan,*a and Zhihua Yang^a

^a Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40–1 South Beijing Road, Urumqi 830011, China ;

^bUniversity of the Chinese Academy of Sciences, Beijing 100039, China

*To whom correspondence should be addressed. Phone: (+86)991-3674558. Fax: (+86)991-3838957. E-mail: slpan@ms.xjb.ac.cn (S. Pan).

Fig. S1. X-ray powder diffraction pattern of compounds about experimental and calculated XRD patterns and sample after melting XRD patterns: (a) $NaCa_4B_3O_9$ (b) $NaCaBO_3$ (c) $NaSrBO_3$ and (d) $Li_4CaB_2O_6$.

Fig. S2. The crystal structure of NaCa₄B₃O_{9.} (a) The cation-coordinated environments. (b) The Na-O polyhedra are interconnected via sharing the O atoms into a 1D chain along the *c* axis. (c) 1D Na-O polyhedra chains are bridged by the B(2) atoms forming a 3D framework. (d) The Ca(1)O₈, Ca(2)O₉ and Ca(3)O₈ polyhedra are interconnected by shared oxygen atoms forming the 3D framework.

Fig. S3. The crystal structure of NaCaBO₃ (a) The cation-coordinated environments. (b) The CaO₆ polyhedra are interconnected via sharing edges into a 1D chain along the *c* axis (c) Ca²⁺ cations and Na⁺ cations share the same sites and Ca/NaO₇ polyhedra are interconnected via sharing O atoms and edges into a 3D framework along the *c* axis. (d) The Na-O polyhedra are interconnected via sharing the O atoms into 1D channel along *a* axis.

Fig. S4. The crystal structure of NaSrBO₃ (a) The cation-coordinated environments. (b) Isolated BO₃ structural building unit along the *c* axis (c) Na²⁺ cations and BO₃ are interconnected via sharing O atoms and edges into a 3D framework along the *c* axis. (d) The Sr-O polyhedra are interconnected via sharing the O atoms into a 3D framework along the *c* axis.

Fig. S5. The crystal structure of $Li_4CaB_2O_6$ (a) The cation-coordinated environments. (b) Isolated BO₃ structural building unit along the *c* axis (c) Li⁺ cations and BO₃ are interconnected via sharing O atoms and edges into a 3D framework along the *c* axis. (d) Ca²⁺ cations and BO₃ are interconnected via sharing O atoms and edges into a 3D framework along the *c* axis.

Fig. S6. The diffuse reflectance spectra for (a) NaCaBO₃ (b) NaSrBO₃ (c) Li₄CaB₂O₆.

(c)

Fig. S7. The calculated band structures of (a) $NaCa_4B_3O_9$ (b) $NaCaBO_3$ (c) $KCa_4B_3O_9$ and (d) $KSr_4B_3O_9$.

(c)

Fig. S8. The total and partial densities of states of (a) KCa₄B₃O₉ and (b) KSr₄B₃O₉.

Energy(eV)

-5

O-s О-р

Fig. S9. SHG intensities of $NaCa_4B_3O_9$ with commercial KDP as a reference: Oscilloscope traces for the powder of KDP and $NaCa_4B_3O_9$.

Fig. S10. The wavelength dependence of refractive indices where the direction of the electric field parallels to *a*-axis (n_x) or *c*-axis (n_z) of (a) KCa₄B₃O₉ and (b) KSr₄B₃O₉.

(b)

NaCa ₄ BO ₉					
Atom	Wyckoff	Х	y	Z	U_{eq}
	position				•
Ca(1)	8c	9724(1)	7141(1)	11087(1)	8(1)
Ca(2)	4a	0	0	9669(1)	12(1)
Ca(3)	4b	7500	6498(1)	7422(1)	8(1)
Na(1)	4b	7500	4249(2)	385(3)	33(1)
B(1)	4b	7500	6715(4)	3161(7)	9(1)
B(2)	4b	7500	3779(4)	4541(8)	12(1)
B(3)	4a	0	0	3924(7)	9(1)
O(1)	4b	7500	6419(2)	1127(5)	12(1)
O(2)	8c	8611(2)	6906(2)	4217(3)	12(1)
O(3)	8c	8611(2)	8385(2)	8622(3)	12(1)
O(4)	4a	0	0	6021(6)	16(1)
O(5)	8c	9714(2)	1021(2)	2877(3)	10(1)
O(6)	4b	7500	4555(3)	6124(5)	23(1)
		NaCa	BO ₃		
Atom	Wyckoff	Х	У	Z	U_{eq}
	position				
Ca(1)	2a	7500	7500	4664(2)	12(1)
Ca(2)	8g	5337(1)	5985(1)	7620(1)	11(1)
Na(1)	8g	5337(1)	5985(1)	7620(1)	11(1)
Na(2)	2b	2500	7500	6213(5)	19(1)
Na(3)	4e	2500	5829(1)	2076(3)	16(1)
B(1)	4e	7500	5399(2)	3206(7)	9(1)
B(2)	4f	4737(3)	7500	1585(8)	11(1)
O(1)	8g	3680(1)	4973(1)	7643(3)	15(1)
O(2)	8g	4166(1)	6750(1)	2513(4)	19(1)
O(3)	4f	5914(2)	7500	-387(5)	14(1)
O(4)	4e	7500	6121(1)	5274(5)	13(1)
		NaSr]	BO ₃	()	
Atom	Wyckoff	Х	y	Z	U _{ea}
	position		-		- 1
Sr(1)	- 4e	7466(1)	862(1)	2178(1)	9(1)
Na(1)	4e	7554(4)	-2582(2)	321(3)	13(1)
B(1)	4e	7493(11)	4204(6)	2403(9)	9(1)
O(1)	4e	7738(7)	-605(4)	-1890(6)	11(1)

Table S1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for NaCa₄B₃O₉, NaCaBO₃, NaSrBO₃ and Li₄CaB₂O₆.

O(2)	4e	9259(7)	3553(4)	1350(6)	10(1)
O(3)	4e	4615(7)	-1571(4)	2166(6)	12(1)
		Li ₄ Ca	B_2O_6		
Atom	Wyckoff	Х	У	Ζ	U_{eq}
	position				
Li(1)	4g	3023(5)	-128(5)	5000	14(1)
Li(2)	4g	5487(5)	1690(6)	0	16(1)
Ca(1)	2a	0	0	10000	9(1)
B(1)	4g	2909(3)	2290(3)	10000	9(1)
O(1)	4g	1424(2)	2525(2)	10000	11(1)
O(2)	4g	3508(2)	733(2)	10000	12(1)
O(3)	4g	1190(2)	-1343(2)	5000	10(1)

 U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

NCDO				
$C_{2}(1) O(1)$	1 Na($\mathbf{D}_{44}\mathbf{D}_{3}\mathbf{U}_{9}$	1 260(6)	
Ca(1) - O(1)	2.3113(11) 2.4060(10)	B(1)-O(1) B(1)-O(2)	1.300(0) 1.297(2)	
Ca(1) - O(2) # 1	2.4000(19)	B(1)-O(2)	1.387(3)	
Ca(1) - O(4) + 2	2.4298(7)	B(1)-O(2)#12	1.38/(3)	
Ca(1)-O(3)	2.435(2)	B(2)-O(6)	1.349(6)	
Ca(1)-O(3)#5	2.4940(19)	B(2)-O(3)#11	1.400(3)	
Ca(1)-O(5)#3	2.433(2)	B(2)-O(3)#3	1.400(3)	
Ca(1)-O(5)#4	2.448(2)	B(3)-O(4)	1.360(6)	
Ca(1)-O(2)	2.367(2)	B(3)-O(5)#16	1.370(3)	
Ca(2)-O(4)	2.365(4)	B(3)-O(5)#10	1.370(3)	
Ca(2)-O(5)	2.396(2)	Na(1)-O(1)	2.491(4)	
Ca(2)-O(5)#4	2.396(2)	Na(1)-O(6)	2.784(4)	
Ca(2)-O(3)	2.4445(18)	Na(1)-O(3)#2	2.600(3)	
Ca(2)-O(3)#4	2.4445(18)	Na(1)-O(3)#14	2.600(3)	
Ca(2)-O(2)#7	2.6261(19)	Na(1)-O(4)#2	2.8323(11)	
Ca(2)-O(2)#1	2.6261(19)	Na(1)-O(4)#15	2.8323(11)	
Ca(2)-O(6)#5	2.8772(15)	Na(1)-O(2)#11	2.992(3)	
Ca(2)-O(6)#6	2.8772(15)	Na(1)-O(2)#3	2.992(3)	
Ca(3)-O(6)	2.345(3)	Ca(3)-O(5)#11	2.4443(17)	
Ca(3)-O(1)	2.404(3)	Ca(3)-O(5)#3	2.4443(17)	
Ca(3)-O(2)#9	2.437(2)	Ca(3)-O(3)	2.5552(19)	
Ca(3)-O(2)#10	2.437(2)	Ca(3)-O(3)#12	2.5552(19)	
O(2)-Ca(1)-O(2)#1	148.58(7)	O(1)-Na(1)-O(3)#2	102.22(10)	
O(2)#1-Ca(1)-O(4)#2	110.13(7)	O(1)-Na(1)-O(3)#14	102.22(10)	
O(2)-Ca(1)-O(5)#3	132.33(7)	O(3)#2-Na(1)-O(3)#14	54.32(9)	
O(2)-Ca(1)-O(4)#2	88.00(9)	O(1)-Na(1)-O(6)	94.03(11)	
O(2)#1-Ca(1)-O(5)#3	78.66(7)	O(3)#2-Na(1)-O(6)	147.91(8)	
O(4)#2-Ca(1)-O(5)#3	58.08(10)	O(3)#14-Na(1)-O(6)	147.91(8)	
O(2)-Ca(1)-O(3)	112.45(6)	O(1)-Na(1)-O(4)#2	71.27(4)	
O(2)#1-Ca(1)-O(3)	76.92(6)	O(3)#2-Na(1)-O(4)#2	64.13(7)	
O(4)#2-Ca(1)-O(3)	128.24(9)	O(3)#14-Na(1)-O(4)#2	115.14(10)	
O(5)#3-Ca(1)-O(3)	74.63(7)	O(6)-Na(1)-O(4)#2	96.17(8)	
O(2)-Ca(1)-O(5)#4	79.11(7)	O(1)-Na(1)-O(4)#15	71.27(4)	
O(2)#1-Ca(1)-O(5)#4	71.34(7)	O(3)#2-Na(1)-O(4)#15	115.14(10)	
O(4)#2-Ca(1)-O(5)#4	144.84(9)	O(3)#14-Na(1)-O(4)#15	64.13(7)	
O(5)#3-Ca(1)-O(5)#4	147.64(7)	O(6)-Na(1)-O(4)#15	96.17(8)	
O(3)-Ca(1)-O(5)#4	86.82(7)	O(4)#2-Na(1)-O(4)#15	141.20(10)	
O(2)-Ca(1)-O(3)#5	76.51(6)	O(1)-Na(1)-O(2)#11	156.14(4)	
O(2)#1-Ca(1)-O(3)#5	84.84(7)	O(3)#2-Na(1)-O(2)#11	93.16(8)	
O(4)#2-Ca(1)-O(3)#5	71.89(8)	O(3)#14-Na(1)-O(2)#11	72.10(7)	
O(5)#3-Ca(1)-O(3)#5	116.32(7)	O(6)-Na(1)-O(2)#11	81.83(9)	
O(3)-Ca(1)-O(3)#5	156.56(2)	O(4)#2-Na(1)-O(2)#11	132.43(7)	
O(5)#4-Ca(1)-O(3)#5	73.33(6)	O(4)#15-Na(1)-O(2)#11	85.75(5)	
O(2)-Ca(1)-O(1)	58.65(8)	O(1)-Na(1)-O(2)#3	156.14(4)	

Table S2. Selected bond distances (Å) and angles (deg) for $NaCa_4B_3O_9$, $NaCaBO_3$, $NaSrBO_3$ and $Li_4CaB_2O_6$.

O(2)#1-Ca(1)-O(1)	148.15(9)	O(3)#2-Na(1)-O(2)#3	72.10(7)
O(4)#2-Ca(1)-O(1)	78.11(6)	O(3)#14-Na(1)-O(2)#3	93.16(8)
O(5)#3-Ca(1)-O(1)	80.65(8)	O(6)-Na(1)-O(2)#3	81.83(9)
O(3)- $Ca(1)$ - $O(1)$	74.41(8)	O(4)#2-Na(1)-O(2)#3	85.75(5)
O(5)#4-Ca(1)-O(1)	120.05(8)	O(4)#15-Na(1)-O(2)#3	132.43(7)
O(3)#5-Ca(1)-O(1)	126.26(8)	O(2)#11-Na(1)-O(2)#3	46.77(8)
O(4)-Ca(2)-O(5)	150.22(5)	O(6)-B(2)-O(3)#11	121.97(18)
O(4)-Ca(2)-O(5)#4	150.22(5)	O(6)-B(2)-O(3)#3	121.97(18)
O(5)-Ca(2)-O(5)#4	59.56(10)	O(3)#11-B(2)-O(3)#3	115.9(4)
O(4)-Ca(2)-O(3)	73.87(5)	O(1)-B(1)-O(2)	121.08(18)
O(5)-Ca(2)-O(3)	121.40(7)	O(1)-B(1)-O(2)#12	121.08(18)
O(5)#4-Ca(2)-O(3)	87.77(7)	O(2)-B(1)-O(2)#12	117.7(4)
O(4)-Ca(2)-O(3)#4	73.87(5)	O(4)-B(3)-O(5)#16	119.7(2)
O(5)-Ca(2)-O(3)#4	87.77(7)	O(4)-B(3)-O(5)#10	119.7(2)
O(5)#4-Ca(2)-O(3)#4	121.40(7)	O(5)#16-B(3)-O(5)#10	120.6(4)
O(5)-Ca(2)-O(2)#7	68.44(6)	O(1)-Ca(3)-O(2)#9	149.21(5)
O(5)#4-Ca(2)-O(2)#7	124.15(7)	O(6)-Ca(3)-O(2)#10	82.53(9)
O(3)-Ca(2)-O(2)#7	103.55(6)	O(1)-Ca(3)-O(2)#10	149.21(5)
O(3)#4-Ca(2)-O(2)#7	72.76(6)	O(2)#9-Ca(3)-O(2)#10	58.33(8)
O(4)-Ca(2)-O(2)#1	83.59(5)	O(6)-Ca(3)-O(5)#11	80.69(5)
O(5)-Ca(2)-O(2)#1	124.15(7)	O(1)-Ca(3)-O(5)#11	82.60(6)
O(5)#4-Ca(2)-O(2)#1	68.44(6)	O(2)#9-Ca(3)-O(5)#11	70.89(7)
O(3)-Ca(2)-O(2)#1	72.76(6)	O(2)#10-Ca(3)-O(5)#11	128.03(7)
O(3)#4-Ca(2)-O(2)#1	103.55(6)	O(6)-Ca(3)-O(5)#3	80.69(5)
O(2)#7-Ca(2)-O(2)#1	167.18(10)	O(1)-Ca(3)-O(5)#3	82.60(6)
O(4)-Ca(2)-O(6)#5	109.15(7)	O(2)#9-Ca(3)-O(5)#3	128.03(7)
O(5)-Ca(2)-O(6)#5	75.52(8)	O(2)#10-Ca(3)-O(5)#3	70.89(7)
O(5)#4-Ca(2)-O(6)#5	71.38(7)	O(5)#11-Ca(3)-O(5)#3	150.96(10)
O(3)-Ca(2)-O(6)#5	141.68(7)	O(6)-Ca(3)-O(3)	152.31(4)
O(3)#4-Ca(2)-O(6)#5	52.96(7)	O(1)-Ca(3)-O(3)	74.13(8)
O(2)#7-Ca(2)-O(6)#5	114.77(7)	O(2)#9-Ca(3)-O(3)	109.22(7)
O(2)#1-Ca(2)-O(6)#5	69.77(7)	O(2)#10-Ca(3)-O(3)	82.91(7)
B(3)#8-Ca(2)-O(6)#5	70.85(7)	O(5)#11-Ca(3)-O(3)	126.56(7)
O(4)-Ca(2)-O(6)#6	109.15(7)	O(5)#3-Ca(3)-O(3)	72.32(6)
O(5)-Ca(2)-O(6)#6	71.38(7)	O(6)-Ca(3)-O(3)#12	152.31(4)
O(5)#4-Ca(2)-O(6)#6	75.52(8)	O(1)-Ca(3)-O(3)#12	74.13(8)
O(3)-Ca(2)-O(6)#6	52.96(7)	O(2)#9-Ca(3)-O(3)#12	82.91(7)
O(3)#4-Ca(2)-O(6)#6	141.68(7)	O(2)#10-Ca(3)-O(3)#12	109.22(7)
O(2)#7-Ca(2)-O(6)#6	69.77(7)	O(5)#11-Ca(3)-O(3)#12	72.32(6)
O(2)#1-Ca(2)-O(6)#6	114.77(7)	O(5)#3-Ca(3)-O(3)#12	126.56(7)
O(6)#5-Ca(2)-O(6)#6	141.71(14)	O(3)-Ca(3)-O(3)#12	55.36(8)

Note. Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+3/2,z-1/2	#2 x,y-1/2,z+1/2	#3 x,y-1/2,z-1/2
#4 -x+2,-y+2,z	#5 -x+2,-y+3/2,z+1/2	#6 x,y+1/2,z+1/2
#7 x,y+1/2,z-1/2	#8 x,y,z+1	#9 -x+3/2,y,z-1
#10 x,y,z-1	#11 -x+3/2,y-1/2,z-1/2	#12 -x+3/2,y,z

#13 x-1/2,-y+3/2,z-1/2 #16 -x+2,-y+2,z-1

	NaC	aBO ₃	
Ca(1)-O(4)	2.2266(17)	Ca(2)-O(1)	2.3443(13)
Ca(1)-O(4)#1	2.2266(17)	Ca(2)-O(4)	2.3618(9)
Ca(1)-O(3)#2	2.3654(18)	Ca(2)-O(2)	2.4189(14)
Ca(1)-O(3)#3	2.3654(18)	Ca(2)-O(1)#7	2.4708(14)
Ca(1)-O(3)	2.3915(18)	Ca(2)-O(2)#4	2.4723(15)
Ca(1)-O(3)#1	2.3915(18)	Ca(2)-O(1)#8	2.5973(13)
Na(2)-O(2)#9	2.4502(16)	Ca(2)-O(3)#3	2.6010(9)
Na(2)-O(2)	2.4502(16)	B(1)-O(4)	1.368(3)
Na(2)-O(2)#10	2.4502(16)	B(1)-O(1)#8	1.3750(18)
Na(2)-O(2)#11	2.4502(16)	B(1)-O(1)#14	1.3750(18)
Na(3)-O(2)	2.2570(15)	B(2)-O(2)	1.3785(19)
Na(3)-O(2)#9	2.2570(15)	B(2)-O(2)#10	1.3785(19)
Na(3)-O(1)#9	2.3945(15)	B(2)-O(3)#3	1.382(3)
Na(3)-O(1)	2.3945(15)	O(4)- $Ca(1)$ - $O(3)$	94.04(4)
Na(3)-O(1)#3	2.6673(16)	O(4)#1-Ca(1)-O(3)	94.04(4)
Na(3)-O(1)#13	2.6673(16)	O(3)#2-Ca(1)-O(3)	179.42(6)
O(4)-Ca(1)-O(4)#1	169.02(10)	O(3)#3-Ca(1)-O(3)	94.37(6)
O(4)-Ca(1)-O(3)#2	86.00(4)	O(4)-Ca(1)-O(3)#1	94.04(4)
O(4)#1-Ca(1)-O(3)#2	86.00(4)	O(4)#1-Ca(1)-O(3)#1	94.04(4)
O(4)-Ca(1)-O(3)#3	86.00(4)	O(3)#2-Ca(1)-O(3)#1	94.37(6)
O(4)#1-Ca(1)-O(3)#3	86.00(4)	O(3)#3-Ca(1)-O(3)#1	179.42(6)
O(3)#2-Ca(1)-O(3)#3	86.21(9)	O(3)-Ca(1)-O(3)#1	85.05(8)
O(1)-Ca(2)-O(4)	137.55(5)	O(1)-Ca(2)-O(2)	89.73(5)
O(4)-Ca(2)-O(2)	131.13(5)	O(1)-Ca(2)-O(1)#7	81.81(5)
O(4)-Ca(2)-O(1)#7	84.92(5)	O(2)-Ca(2)-O(1)#7	92.56(5)
O(1)-Ca(2)-O(2)#4	90.00(5)	O(4)-Ca(2)-O(2)#4	98.87(5)
O(2)-Ca(2)-O(2)#4	91.02(5)	O(1)#7-Ca(2)-O(2)#4	171.04(5)
O(1)-Ca(2)-O(1)#8	82.47(5)	O(4)-Ca(2)-O(1)#8	56.63(5)
O(2)-Ca(2)-O(1)#8	172.17(5)	O(1)#7-Ca(2)-O(1)#8	86.99(5)
O(2)#4-Ca(2)-O(1)#8	88.35(5)	O(1)-Ca(2)-O(3)#3	144.28(5)
O(4)-Ca(2)-O(3)#3	78.14(6)	O(2)-Ca(2)-O(3)#3	56.40(5)
O(1)#7-Ca(2)-O(3)#3	108.25(5)	O(2)#4-Ca(2)-O(3)#3	80.55(5)
O(1)#8-Ca(2)-O(3)#3	131.06(5)	O(2)#9-Na(2)-O(2)	87.69(8)
O(2)#9-Na(2)-O(2)#10	116.40(9)	O(2)-Na(2)-O(2)#10	59.01(7)
O(2)#9-Na(2)-O(2)#11	59.01(7)	O(2)-Na(2)-O(2)#11	116.40(9)
O(2)#10-Na(2)-O(2)#11	87.69(8)	O(2)-Na(3)-O(2)#9	97.53(8)
O(2)-Na(3)-O(1)#9	142.96(6)	O(2)#9-Na(3)-O(1)#9	92.46(5)
O(2)-Na(3)-O(1)	92.46(5)	O(2)#9-Na(3)-O(1)	142.96(6)
O(1)#9-Na(3)-O(1)	60.29(7)	O(2)-Na(3)-O(1)#3	87.14(5)
O(2)#9-Na(3)-O(1)#3	128.92(6)	O(1)#9-Na(3)-O(1)#3	113.59(7)
O(1)-Na(3)-O(1)#3	86.98(5)	O(2)-Na(3)-O(1)#13	128.92(6)
O(2)#9-Na(3)-O(1)#13	87.14(5)	O(1)#9-Na(3)-O(1)#13	86.98(5)
O(1)-Na(3)-O(1)#13	113.59(7)	O(1)#3-Na(3)-O(1)#13	53.59(6)
O(4)-B(1)-O(1)#8	118.87(11)	O(4)-B(1)-O(1)#14	118.87(11)

O(1)#8-B(1)-O(1)#14	122.0(2)	O(2)-B(2)-O(2)#10	122.2(2)
O(2)-B(2)-O(3)#3	118.92(12)	O(2)#10-B(2)-O(3)#3	118.92(12)

Note. Symmetry transformations used to generate equivalent atoms:

- #1 -x+3/2,-y+3/2,z #4 x,y,z-1 #7 -x+1,-y+1,-z+2 #10 x,-y+3/2,z #13 -x+1/2,y,z+1 #16 x,-y+3/2,z+1
- #2 -x+3/2,-y+3/2,z+1 #5 -x+3/2,-y+3/2,z-1 #8 -x+1,-y+1,-z+1 #11 -x+1/2,-y+3/2,z #14 x+1/2,-y+1,-z+1 #17 x,-y+3/2,z-1
- #3 x,y,z+1 #6 -x+3/2,y,z #9 -x+1/2,y,z #12 -x+1/2,-y+3/2,z+1 #15 -x+3/2,y,z-1

NaSrBO ₃				
Sr(1)-O(2)#1	2.596(4)	Na(1)-O(1)	2.286(4)	
Sr(1)-O(1)#2	2.603(4)	Na(1)-O(3)	2.289(4)	
Sr(1)-O(3)#3	2.685(4)	Na(1)-O(2)#2	2.315(4)	
Sr(1)-O(3)	2.718(4)	Na(1)-O(3)#8	2.374(4)	
Sr(1)-O(3)#4	2.745(4)	Na(1)-O(1)#9	2.374(4)	
Sr(1)-O(2)	2.750(4)	Na(1)-O(2)#5	2.608(4)	
Sr(1)-O(1)#4	2.754(4)	B(1)-O(1)#1	1.366(7)	
Sr(1)-O(2)#5	2.800(4)	B(1)-O(2)	1.371(7)	
Sr(1)-O(1)	2.848(4)	B(1)-O(3)#3	1.396(7)	
O(2)#1-Sr(1)-O(1)#2	84.05(12)	O(1)#2-Sr(1)-O(2)	72.09(11)	
O(2)#1-Sr(1)-O(3)#3	75.95(12)	O(3)#3-Sr(1)-O(2)	52.43(12)	
O(1)#2-Sr(1)-O(3)#3	121.87(11)	O(3)-Sr(1)-O(2)	164.74(11)	
O(2)#1-Sr(1)-O(3)	106.27(11)	O(3)#4-Sr(1)-O(2)	72.50(11)	
O(1)#2-Sr(1)-O(3)	118.59(12)	O(2)#1-Sr(1)-O(1)#4	105.30(11)	
O(3)#3-Sr(1)-O(3)	119.33(5)	O(1)#2-Sr(1)-O(1)#4	167.40(16)	
O(2)#1-Sr(1)-O(3)#4	153.99(12)	O(3)#3-Sr(1)-O(1)#4	69.40(11)	
O(1)#2-Sr(1)-O(3)#4	100.59(12)	O(3)-Sr(1)-O(1)#4	51.17(11)	
O(3)#3-Sr(1)-O(3)#4	80.01(9)	O(3)#4-Sr(1)-O(1)#4	74.79(11)	
O(3)-Sr(1)-O(3)#4	94.03(11)	O(2)-Sr(1)-O(1)#4	116.50(11)	
O(2)#1-Sr(1)-O(2)	84.93(9)	O(2)#1-Sr(1)-O(2)#5	75.70(13)	
O(3)#3-Sr(1)-O(2)#5	151.56(11)	O(3)-Sr(1)-O(2)#5	71.42(12)	
O(3)#4-Sr(1)-O(2)#5	127.32(11)	O(1)#2-Sr(1)-O(2)#5	52.46(11)	
O(2)-Sr(1)-O(2)#5	122.32(6)	O(3)-Sr(1)-O(1)	73.73(11)	
O(1)#4-Sr(1)-O(2)#5	120.92(11)	O(3)#4-Sr(1)-O(1)	49.94(11)	
O(2)#1-Sr(1)-O(1)	151.49(11)	O(2)-Sr(1)-O(1)	101.48(11)	
O(1)#2-Sr(1)-O(1)	71.93(12)	O(1)#4-Sr(1)-O(1)	96.66(10)	
O(3)#3-Sr(1)-O(1)	129.82(11)	O(2)#5-Sr(1)-O(1)	77.51(11)	
O(1)-Na(1)-O(3)	93.84(15)	O(1)-Na(1)-O(2)#2	86.52(15)	
O(3)-Na(1)-O(2)#2	176.14(16)	O(1)-Na(1)-O(3)#8	83.35(15)	
O(3)-Na(1)-O(3)#8	97.03(18)	O(1)-Na(1)-O(1)#9	170.43(18)	
O(2)#2-Na(1)-O(3)#8	86.83(15)	O(3)-Na(1)-O(1)#9	83.22(14)	
O(2)#2-Na(1)-O(1)#9	95.81(15)	O(3)#8-Na(1)-O(1)#9	106.02(15)	
O(1)-Na(1)-O(2)#5	92.27(15)	O(3)-Na(1)-O(2)#5	81.99(15)	

O(2)#2-Na(1)-O(2)#5	94 16(17)	O(3)#8-Na(1)- $O(2)$ #5	175 45(15)
O(1)#9-Na(1)-O(2)#5	78 32(14)	O(1)#1-B(1)-O(2)	122 1(5)
O(1)#1-B(1)-O(3)#3	117.5(5)	O(2)-B(1)-O(3)#3	120.4(5)

Note. Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2	#2 -x+2,-y,-z	#3 -x+1,y+1/2,-z+1/2
#4 -x+1,-y,-z	#5 -x+2,y-1/2,-z+1/2	#6 x,-y+1/2,z-1/2
#7 -x+1,y-1/2,-z+1/2	#8 x,-y-1/2,z-1/2	#9 x,-y-1/2,z+1/2
#10 -x+2,y+1/2,-z+1/2		

Li ₄ CaB ₂ O ₆				
Li(1)-O(2)	1.931(3)	Ca(1)-O(3)#10	2.333(2)	
Li(1)-O(2)#1	1.931(3)	Ca(1)-O(3)#11	2.333(2)	
Li(1)-O(3)	1.965(5)	Ca(1)-O(3)	2.333(2)	
Li(1)-O(1)#2	1.969(5)	Ca(1)-O(3)#5	2.333(2)	
Li(2)-O(2)#1	1.993(5)	Ca(1)-O(1)	2.435(3)	
Li(2)-O(1)#6	2.050(3)	Ca(1)-O(1)#10	2.435(3)	
Li(2)-O(1)#7	2.050(3)	B(1)-O(2)	1.378(3)	
Li(2)-O(2)#3	2.172(5)	B(1)-O(3)#9	1.387(3)	
Li(2)-O(3)#8	2.227(5)	B(1)-O(1)	1.391(4)	
O(2)-Li(1)-O(2)#1	129.1(3)	O(2)-Li(1)-O(3)	112.46(14)	
O(2)#1-Li(1)-O(3)	112.46(14)	O(2)-Li(1)-O(1)#2	106.73(16)	
O(2)#1-Li(1)-O(1)#2	106.73(16)	O(3)-Li(1)-O(1)#2	75.05(18)	
O(2)#1-Li(2)-O(1)#6	120.74(13)	O(2)#1-Li(2)-O(1)#7	120.74(13)	
O(1)#6-Li(2)-O(1)#7	116.6(2)	O(2)#1-Li(2)-O(2)#3	92.5(2)	
O(1)#6-Li(2)-O(2)#3	95.64(16)	O(1)#7-Li(2)-O(2)#3	95.64(16)	
O(2)#1-Li(2)-O(3)#8	68.57(18)	O(1)#6-Li(2)-O(3)#8	94.25(17)	
O(1)#7-Li(2)-O(3)#8	94.25(17)	O(2)#3-Li(2)-O(3)#8	161.1(2)	
O(3)#10-Ca(1)-O(3)#11	96.75(11)	O(3)#10-Ca(1)-O(3)	180.0	
O(3)#11-Ca(1)-O(3)	83.25(11)	O(3)#10-Ca(1)-O(3)#5	83.25(11)	
O(3)#11-Ca(1)-O(3)#5	180.0	O(3)-Ca(1)-O(3)#5	96.75(11)	
O(3)#10-Ca(1)-O(1)	82.25(8)	O(3)#11-Ca(1)-O(1)	82.25(8)	
O(3)-Ca(1)-O(1)	97.75(8)	O(3)#5-Ca(1)-O(1)	97.75(8)	
O(3)#10-Ca(1)-O(1)#10	97.75(8)	O(3)#11-Ca(1)-O(1)#10	97.75(8)	
O(3)-Ca(1)-O(1)#10	82.25(8)	O(3)#5-Ca(1)-O(1)#10	82.25(8)	
O(1)-Ca(1)-O(1)#10	180.0			

Note. Symmetry transformations used to generate equivalent atoms:

#1 x,y,z-1	#2 -x+1/2,y-1/2,-z+3/2	#3 -x+1,-y,-z+1
#4 -x+1,-y,-z	#5 x,y,z+1	#6 x+1/2,-y+1/2,z-1/2
#7 x+1/2,-y+1/2,z-3/2	#8 -x+1/2,y+1/2,-z+1/2	#9 -x+1/2,y+1/2,-z+3/2
#10 -x,-y,-z+2	#11 -x,-y,-z+1	#12 x-1/2,-y+1/2,z+3/2
#13 -x+1/2,y-1/2,-z+1/2	#14 x-1/2,-y+1/2,z+1/2	

Atoms	1	S	Atoms	1	S		
NaCa ₄ B ₃ O ₉							
Ca(1)-O(2)	2.367(2)	0.339	Ca(2)-O(4)	2.365(4)	0.341		
Ca(1)-O(2)#1	2.4060(19)	0.305	Ca(2)-O(5)	2.396(2)	0.314		
Ca(1)-O(4)#2	2.4298(7)	0.286	Ca(2)-O(5)#4	2.396(2)	0.314		
Ca(1)-O(3)	2.435(2)	0.282	Ca(2)-O(3)	2.4445(18)	0.275		
Ca(1)-O(3)#5	2.4940(19)	0.241	Ca(2)-O(3)#4	2.4445(18)	0.275		
Ca(1)-O(5)#3	2.433(2)	0.284	Ca(2)-O(2)#7	2.6261(19)	0.168		
Ca(1)-O(5)#4	2.448(2)	0.273	Ca(2)-O(2)#1	2.6261(19)	0.168		
Ca(1)-O(1)	2.5113(11)	0.230	Ca(2)-O(6)#5	2.8772(15)	0.085		
$\sum s$		2.24	Ca(2)-O(6)#6	2.8772(15)	0.085		
Ca(3)-O(6)	2.345(3)	0.360	$\sum s$		2.025		
Ca(3)-O(1)	2.404(3)	0.307	Na(1) -O(1)	2.491(4)	0.156		
Ca(3)-O(2)#9	2.437(2)	0.281	Na(1)-O(6)	2.784(4)	0.071		
Ca(3)-O(2)#10	2.437(2)	0.281	Na(1)-O(3)#2	2.600(3)	0.116		
Ca(3)-O(5)#11	2.4443(17)	0.275	Na(1)-O(3)#14	2.600(3)	0.116		
Ca(3)-O(5)#3	2.4443(17)	0.275	Na(1)-O(4)#2	2.8323(11)	0.062		
Ca(3)-O(3)	2.5552(19)	0.204	Na(1)-O(4)#15	2.8323(11)	0.062		
Ca(3)-O(3)#12	2.5552(19)	0.204	Na(1)-O(2)#11	2.992(3)	0.040		
$\sum s$		2.187	Na(1)-O(2)#3	2.992(3)	0.040		
B(1)-O(1)	1.360(6)	1.030	$\sum s$		0.663		
B(1)-O(2)	1.387(3)	0.958	B(3) - O(4)	1.360(6)	1.030		
B(1)-O(2)#12	1.387(3)	0.958	B(3)-O(5)#16	1.370(3)	1.003		
\sum s		2.946	B(3)-O(5)#10	1.370(3)	1.003		
B(2) - O(6)	1.349(6)	1.061	$\sum s$		3.036		
B(2)-O(3)#11	1.400(3)	0.925					
B(2)-O(3)#3	1.400(3)	0.925					
\sum s		2.911					
NaCaBO ₃							
Ca(1)-O(4)	2.2266(17)	0.496	Ca(2)-O(1)	2.3443(13)	0.361		
Ca(1)-O(4)#1	2.2266(17)	0.496	Ca(2)-O(4)	2.3618(9)	0.344		
Ca(1)-O(3)#2	2.3654(18)	0.341	Ca(2)-O(2)	2.4189(14)	0.295		
Ca(1)-O(3)#3	2.3654(18)	0.341	Ca(2)-O(1)#7	2.4708(14)	0.256		
Ca(1)-O(3)	2.3915(18)	0.317	Ca(2)-O(2)#4	2.4723(15)	0.255		
Ca(1)-O(3)#1	2.3915(18)	0.317	Ca(2)-O(1)#8	2.5973(13)	0.182		
$\sum s$		2.308	Ca(2)-O(3)#3	2.6010(9)	0.180		
Na(2)-O(2)#9	2.4502(16)	0.174	$\sum s$		1.873		
Na(2)-O(2)	2.4502(16)	0.174	Na(3)-O(2)	2.2570(15)	0.293		
Na(2)-O(2)#10	2.4502(16)	0.174	Na(3)-O(2)#9	2.2570(15)	0.293		

Table S3. Bond valence analysis of NaCa₄B₃O₉, NaCaBO₃, NaSrBO₃ and Li₄CaB₂O₆.^{a,b}

Na(2)-O(2)#11	2.4502(16)	0.174	Na(3)-O(1)#9	2.3945(15)	0.202		
Na(2)-O(2)#13	3.028	0.036	Na(3)-O(1)	2.3945(15)	0.293		
Na(2)-O(2) #11	3.028	0.036	Na(3)-O(1)#3	2.6673(16)	0.097		
Na(2)-O(2)#16	3.028	0.036	Na(3)-O(1)#13	2.6673(16)	0.097		
Na(2)-O(2)#3	3.028	0.036	$\sum s$		1.275		
$\sum s$		0.84	B(2)-O(2)	1.3785(19)	0.980		
B(1)-O(4)	1.368(3)	1.008	B(2)-O(2)#10	1.3785(19)	0.980		
B(1)-O(1)#8	1.3750(18)	0.989	B(2)-O(3)#3	1.382(3)	0.971		
B(1)-O(1)#14	1.3750(18)	0.989	$\sum s$		2.931		
$\sum s$		2.986					
NaSrBO ₃							
Sr(1)-O(2)#1	2.595(4)	0.275	Na(1)-O(1)	2.285(4)	0.272		
Sr(1)-O(1)#2	2.603(4)	0.27	Na(1)-O(3)	2.288(4)	0.270		
Sr(1)-O(3)#3	2.685(4)	0.216	Na(1)-O(2)#2	2.314(4)	0.251		
Sr(1)-O(3)	2.718(4)	0.198	Na(1)-O(3)#8	2.372(4)	0.214		
Sr(1)-O(3)#4	2.746(4)	0.183	Na(1)-O(1)#9	2.375(4)	0.213		
Sr(1)-O(2)	2.750(4)	0.181	Na(1)-O(2)#5	2.609(4)	0.113		
Sr(1)-O(1)#4	2.754(4)	0.179	$\sum s$		1.333		
Sr(1)-O(2)#5	2.800(4)	0.158	B(1)-O(1)#1	1.366(7)	1.014		
Sr(1)-O(1)	2.848(4)	0.139	B(1)-O(2)	1.371(7)	1.001		
\sum s		1.799	B(1)-O(3)#3	1.398(7)	0.930		
			$\sum s$		2.945		
Li ₄ CaB ₂ O ₆							
Li(1)-O(2)	1.931(3)	0.285	Ca(1)-O(3)#10	2.333(2)	0.372		
Li(1)-O(2)#1	1.931(3)	0.285	Ca(1)-O(3)#11	2.333(2)	0.372		
Li(1)-O(3)	1.965(5)	0.260	Ca(1)-O(3)	2.333(2)	0.372		
Li(1)-O(1)#2	1.969(5)	0.257	Ca(1)-O(3)#5	2.333(2)	0.372		
\sum s		1.087	Ca(1)-O(1)	2.435(3)	0.282		
Li(2)-O(2)#1	1.993(5)	0.241	Ca(1)-O(1)#10	2.435(3)	0.282		
Li(2)-O(1)#6	2.050(3)	0.206	$\sum s$		2.052		
Li(2)-O(1)#7	2.050(3)	0.206	B(1)-O(2)	1.378(3)	0.981		
Li(2)-O(2)#3	2.172(5)	0.148	B(1)-O(3)#9	1.387(3)	0.958		
Li(2)-O(3)#8	2.227(5)	0.128	B(1)-O(1)	1.391(4)	0.947		
$\sum s$		0.929	$\sum s$		2.886		

^a Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).

^b Valence sums calculated with the formula: $S_i = \exp[(R_0 - R_i)/B]$, where $S_i =$ valence of bond "*i*" and B = 0.37. Superscripts indicate the number of equivalent bonds for anions.

NaCa ₄ B ₃ O ₉ dipole moment						
species	$\mathbf{x}(a)$	$\mathbf{v}(\mathbf{h})$	$\pi(a)$	n	magnitude	
species	$\mathbf{X}(u)$	y(<i>b</i>)	2(0)	debye	$\times 10^{-4} esu \cdot cm/Å^3$	
$B(1)O_{3}$	0.00	-0.97	0.35			
	0.00	-0.97	0.35			
	0.00	0.97	0.35			
	0.00	0.97	0.35			
$\epsilon(B(1)O_3)$	0.00	0.00	1.40	1.40	17.96	
$B(2)O_3$	0.00	0.08	-1.44			
	0.00	0.08	-1.44			
	0.00	-0.08	-1.44			
	0.00	-0.08	-1.44			
$\epsilon(B(2)O_3)$	0.00	0.00	-5.75	5.53	70.83	
B(3)O ₃	0.00	0.00	0.09			
	0.00	0.00	0.09			
	0.00	0.00	0.09			
	0.00	0.00	0.09			
$\epsilon(B(3)O_3)$	0.00	0.00	0.38	0.38	4.85	
$Na(1)O_8$	0.00	3.48	2.63			
	0.00	3.48	2.63			
	0.00	-3.48	2.63			
	0.00	-3.48	2.63			
$\epsilon(Na(1)O_8)$	0.00	0.00	10.53	10.53	134.95	
$Ca(1)O_8$	1.18	3.06	-0.28			
	-1.18	3.06	-0.28			
	1.18	-3.06	-0.28			
	-1.18	-3.06	-0.28			
	1.18	3.06	-0.28			
	-1.18	3.06	-0.28			
	1.18	-3.06	-0.28			
	-1.18	-3.06	-0.28			
ε(Ca(1)O8)	0.00	0.00	-2.27	2.23	28.62	
$Ca(2)O_9$	0.00	0.00	5.46			
	0.00	0.00	5.46			
	0.00	0.00	5.46			
	0.00	0.00	5.46			
$\epsilon(Ca(2)O_9)$	0.00	0.00	21.86	21.86	280.08	
$Ca(3)O_8$	0.00	-5.49	-2.21			

Table S4. Dipole moment of NaCa₄B₃O₉ and NaCaBO₃.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	5.49	-2.21		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.00	-5.49	-2.21		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.00	5.49	-2.21		
$\begin{tabular}{ c c c c c c c c c c c } \hline Unit Cell & 0 & 0 & 17.30 \\ \hline & & & & & & & & & & & & & & & & & &$	ε(Ca(3)O8)	0.00	0.00	-8.85	8.85	113.35
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Unit Cell	0	0	17.30		
$\begin{tabular}{ c c c c c c c } \hline NaCaBO_3 dipole moment \\ \hline Species & x(a) & y(b) & z(c) & \hline magnitude \\ \hline debye & \times 10^{-4}esu \cdot cm \\ \hline B(1)O_3 & 0.00 & 0.31 & 1.40 \\ & 0.00 & -0.31 & 1.40 \\ & 0.00 & -0.31 & -1.40 \\ & 0.00 & -0.31 & -1.40 \\ \hline e(B(1)O_3) & 0.00 & 0.00 & 0.00 & 0.00 \\ B(2)O_3 & 0.34 & 0.00 & -0.41 \\ & 0.34 & 0.00 & -0.41 \\ & 0.34 & 0.00 & 0.41 \\ & -0.34 & 0.00 & 0.41 \\ \hline e(B(2)O_3) & 0.00 & 0.00 & 0.00 \\ Na(1)O_6 & 0.00 & 5.97 & 2.18 \\ & 0.00 & -5.97 & 2.18 \\ & 0.00 & -5.97 & -2.18 \\ \hline e(Na(1)O_6) & 0.00 & 0.00 & 0.00 & 0.00 \\ Na(2)O_8 & 0.00 & 0.00 & -9.76 \\ \hline 0.00 & 0.00 & 9.76 \\ \hline \end{tabular}$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			NaCaBO ₃ o	dipole moment	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	n	nagnitude
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	species	x (<i>a</i>)	y(b)	z(<i>c</i>)	1 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					debye	$\times 10^{-4} \text{esu} \cdot \text{cm/A}^{-3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B(1)O_3$	0.00	0.31	1.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	-0.31	1.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	0.31	-1.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	-0.31	-1.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\epsilon(B(1)O_3)$	0.00	0.00	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B(2)O_{3}$	0.34	0.00	-0.41		0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.34	0.00	-0.41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.34	0.00	0.41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.34	0.00	0.41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ε(B(2)O ₃)	0.00	0.00	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Na(1)O_6$	0.00	5.97	2.18		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	-5.97	2.18		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	5.97	-2.18		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	-5.97	-2.18		
Na(2)O ₈ 0.00 0.00 -9.76 0.00 0.00 9.76	$\epsilon(Na(1)O_6)$	0.00	0.00	0.00	0.00	0.00
0.00 0.00 9.76	$Na(2)O_8$	0.00	0.00	-9.76		
		0.00	0.00	9.76		
$\epsilon(Na(2)O_8)$ 0.00 0.00 0.00 0.00 0.00	$\epsilon(Na(2)O_8)$	0.00	0.00	0.00	0.00	0.00
$Ca(1)O_6$ 0.00 0.00 2.04	$Ca(1)O_6$	0.00	0.00	2.04		
0.00 0.00 -2.04		0.00	0.00	-2.04		
$\epsilon(Ca(1)O_6)$ 0.00 0.00 0.00 0.00 0.00	$\epsilon(Ca(1)O_6)$	0.00	0.00	0.00	0.00	0.00
Ca(2)O ₇ -1.98 -0.81 -1.02	$Ca(2)O_7$	-1.98	-0.81	-1.02		
1.98 -0.81 -1.02		1.98	-0.81	-1.02		
-1.98 0.81 -1.02		-1.98	0.81	-1.02		
1.98 0.81 -1.02		1.98	0.81	-1.02		
-1.98 -0.81 1.02		-1.98	-0.81	1.02		
1.98 -0.81 1.02		1.98	-0.81	1.02		
-1.98 0.81 1.02		-1.98	0.81	1.02		
1.98 0.81 1.02		1.98	0.81	1.02		
ε(Ca(2)O ₇) 0.00 0.00 0.00 0.00 0.00	ε(Ca(2)O ₇)	0.00	0.00	0.00	0.00	0.00
Unit Cell 0.00 0.00 0.00 0.00 0.00	Unit Cell	0.00	0.00	0.00	0.00	0.00

K-piont	H-VB (eV)	L-CB (eV)
	NaCa ₄ B ₃ O ₉	
Γ(0.000, 0.000, 0.000)	0	4.17048
Z (0.000, 0.000, 0.500)	-0.11341	4.79526
T (-0.500,0.000, 0.000)	-0.12065	5.43394
Y(-0.500,0.000, 0.000)	-0.00333	5.37046
S (-0.500,0.500, 0.000)	-0.02354	4.66665
X (0.000,0.500, 0.000)	-0.06551	4.94604
U (0.000, 0.500, 0.500)	-0.10784	5.14019
R (0.500, 0.500, 0.500)	-0.11797	4.68390
	NaCaBO ₃	
Γ(0.000, 0.000, 0.000)	0	3.78088
Z (0.000, 0.000, 0.500)	-0.14419	6.16210
T (-0.500,0.000, 0.000)	-0.22984	6.20165
Y(-0.500,0.000, 0.000)	-0.16456	4.25982
S (-0.500,0.500, 0.000)	-0.17075	4.66665
X (0.000,0.500, 0.000)	-0.17075	4.23522
U (0.000, 0.500, 0.500)	-0.11484	5.30744
R (0.500, 0.500, 0.500)	-0.15374	6.09875
	KCa ₄ B ₃ O ₉	
Γ (0.000, 0.000, 0.000)	0	4.37001
Z (0.000, 0.000, 0.500)	-0.01650	4.71320
T (-0.500,0.000, 0.000)	-0.07455	4.87639
Y(-0.500,0.000, 0.000)	-0.03807	4.97568
Γ (0.000,0.000, 0.000)	0	4.37001
S (-0.500,0.500, 0.000)	-0.07207	4.65136
R (0.500, 0.500, 0.500)	-0.17070	4.67886
Z (0.000, 0.000, 0.500)	-0.11316	4.71200
	KSr ₄ B ₃ O ₉	
Γ(0.000, 0.000, 0.000)	0	4.26006
Z (0.000, 0.000, 0.500)	-0.05875	4.68503
T (-0.500,0.000, 0.000)	-0.07738	4.95820
Y(-0.500,0.000, 0.000)	-0.03807	4.99692
Γ(0.000, 0.000, 0.000)	0	4.26006
S (-0.500,0.500, 0.000)	-0.04004	4.60431
R (0.500, 0.500, 0.500)	-0.17593	4.66766
Z (0.000, 0.000, 0.500)	-0.11263	4.68503

Table S5. State energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) at same k-points of $NaCa_4B_3O_{9}$, $NaCaBO_{3}$, $KCa_4B_3O_{9}$ and $KSr_4B_3O_{9}$.