Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

On the Non-Classical Contribution in Lone Pair-π Interaction: IQA perspective

Zahra Badri^{[a]*}, Cina Foroutan-Nejad^[a], Jiri Kozelka^[b,c], Radek Marek^{[a,d]*}

^a CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5/A4,

CZ-625 00, Brno, Czech Republic

^b Université Paris Descartes, UMR 8601 CNRS, 45, rue des Saints-Pères, 75270 Paris, France

^c Department of Condensed Matter Physics, Faculty of Science, Masaryk University Kotlářská 2,

CZ-611 37 Brno, Czech Republic

^d Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A4, CZ-625 00 Brno, Czech Republic

* To whom correspondence should be addressed

Email: zbadri@mail.muni.cz, radek.marek@ceitec.muni.cz

Table S1. The difference in atomic-basin charges induced by complexation, Δq , in atomic units for all three motifs of **3**-H₂O.

	С	N	H_{π}^{*}	F	0	${{{\mathbf{H}}_{{\mathbf{W}}}}^{*}}$	water
t_1 -3·H ₂ O	C1/6	+0.0074		-0.0098	-0.0042	+0.0156	+0.0114
	C2/3/4/5	+0.0003		-0.0017			
t_2 -3·H ₂ O	C1	+0.0074		-0.0093	-0.0096	+0.017	+0.0074
	C2	+0.0026		-0.0025			
	C3	+0.0137		-0.0045			
	C4/5/6	-0.0023		-0.0026			
<i>p</i> -3·H ₂ O	C1/4	+0.0092		-0.0036	-0.0156	+0.0152	-0.0004
	C2/3/5/6	+0.0035		-0.0045			

* H_{π} and H_{w} correspond to hydrogen atoms of the ring and both hydrogen atoms of water molecule, respectively.

		С	Ν	${ m H_{\pi}}^*$	F	0	H_W^*
1·H ₂ O	C1	+1.1514		+0.1762		-1.2145	+0.6102
	C3/4	+0.4391		+0.1481			
	N2/5		-1.2533	+0.4991			
2·H ₂ O	C1/2	+1.0917		+0.0772		-1.1948	+0.5986
	N6/7		-0.5794				
	N8/9		-0.5909				
<i>p</i> -3·H ₂ O	C1/4	+0.6815			-0.6754	-1.1939	+0.5967
	C2/3/5/6	+0.6743			-0.6759		
t_1 -3·H ₂ O	C1/6	+0.6785			-0.6812	-1.1810	+0.5962
	C2/3/4/5	+0.6731			-0.6741		
t_2 -3·H ₂ O	C1	+0.6759			-0.6804	-1.1888	+0.5981
	C2	+0.6756			-0.6746		
	C3	+0.6887			-0.6772		
	C4/5/6	+0.6692			-0.6747		
4·H ₂ O	C1/2	+1.8937			-0.6881	-1.1983	+0.6023
	C3	+1.8872			-0.6875		
	N10/12	-1.2043					
	N11	-1.2096					
5·H ₂ O	C(H)	+0.0880		+0.0984		-1.2014	+0.6011
	C(CN)**	+0.1126					
	(C)-CN**	+0.9511					
	(C)-CN**		-1.1562				

Table S2. The magnitude of atomic charges of atoms in the complex in atomic unit.

* H_{π} and H_{w} correspond to hydrogen atom of the ring and hydrogen atom of water molecule, respectively.

** The bold font in C-CN corresponds to the particular atom which it's property has been reported.

Table S3. Inter-atomic interaction energy, contributions of inter-atomic exchange-correlation energy, electrostatic contribution, and delocalization index as well as primary (E_{int}^{prim}) , secondary (E_{int}^{sec}) and fragment-based (E_{int}^{Tot}) for complexes t_1 -**3**·H₂O and t_2 -**3**·H₂O. Energy in kcal·mol⁻¹ and DI in au.

	АВ	E _{inter-atomic}	E _{XC}	E _{Cl}	DI
$t_1 - 3 \cdot H_2O$	OC1/6	-92.2	-2.8	-89.4	0.0272
	OC2/5	-63.1	-0.2	-62.9	0.0038
	OC3/4	-51.0	-0.1	-51.0	0.0011
	E^{prim}_{int}	-412.6	-6.2	-406.4	0.0642
	OF7/12	+88.1	-4.0	+92.1	0.0401
	OF8/11	+59.4	0.0	+59.4	0.0005
	OF9/10	+47.3	0.0	+47.3	0.0002
	${H_W}^\ast \; R$	+4.1	-1.3	+5.4	0.0139
	E_{int}^{sec}	+431.5	-9.3	+409.8	0.0955
	E_{int}^{Tot}	-18.9	-15.5	-3.4	0.1597
t_2 -3·H ₂ O	0C1	-93.5	-3.5	-90.0	0.0318
	OC2	-66.7	-0.5	-66.2	0.0063
	OC3	-89.2	-2.7	-86.5	0.0257
	OC4	-52.9	-0.1	-52.8	0.0013
	OC5	-61.5	-0.2	-61.3	0.0038
	OC6	-51.4	-0.1	-51.3	0.0013
	E^{prim}_{int}	-415.2	-7.1	-408.1	0.0702
	OF7	+88.7	-4.5	+93.2	0.0414
	OF8	+63.2	-0.1	+63.3	0.0010
	OF9	+83.2	-2.5	+85.7	0.0260
	OF10	+49.4	0.0	+49.4	0.0002
	OF11	+58.1	0.0	+58.1	0.0005
	OF12	+48.1	0.0	+48.1	0.0002
	OF	+390.7	-7.1	+397.8	0.0693
	${\rm H}_W{}^*\!\ldots\pi$	+386.2	-0.2	+386.4	0.0027
	$H_W^\ast \; F$	-380.0	-1.0	-379.0	0.0103
	${H_W}^\ast \; R$	+6.2	-1.2	+7.4	0.0130

E_{int}^{sec}	+433.5	-8.2	+405.2	0.0823
E_{int}^{Tot}	-18.2	-15.3	-2.9	0.1525

* R and H_w correspond to sum of all atoms of the π -system (lp-acceptor) and hydrogen atoms of water molecule, respectively.

If we compare primary interactions in three $3 \cdot H_2O$ motifs, we notice that in all of them, $O_{\dots\pi}$ interaction is attractive and the electrostatic contributions are large that are compensated by large repulsive electrostatic contribution due to unfavorable O...F interactions. However, p-3·H₂O benefits more from both exchange-correlation and electrostatic contribution in its primary interaction. Moreover, the exchange-correlation contribution varies more compared to the electrostatic contribution by comparing the first motif $(p-3 \cdot H_2O)$ with the two tilted motifs. It changes about two times more than electrostatic component. In p-3 H₂O structure, the exchangecorrelation contribution of O...C interactions are generally larger than those in t-3 H₂O structures except for two carbons C1 and C6 in t_1 -3·H₂O and C1 and C3 in t_2 -3·H₂O motifs close to the water. It suggests that exchange-correlation contribution is affected more by distance compared to the electrostatic component. Those large attractive electrostatic contributions of primary interaction in all conformers are considerably compensated by the repulsive O...F interactions. As it has pointed out in the previous section, the PES of $3 \cdot H2O$ is quite flat and all complexes have very close interaction energies; nevertheless the t_2 -3·H₂O is about 0.3 and 0.2 kcal.mol⁻¹ more stable than p-and t_1 -HFB·H₂O complexes. Furthermore, t_1 -**3**·H₂O and t_2 -**3**·H₂O generally benefit more from the exchange-correlation contribution compared with the p-3·H₂O. A close look at the results shows that the large exchange-correlation contribution in the tilt structures mostly originated from O...F interactions. Consequently, if we only consider the primary

interaction which should be considered as a lone pair- π interaction, we can suggest more efficient lone pair- π interaction for the *p*-**3**·H₂O structure compared to tilted complexes.