Electronic Supplementary Information for

White light emission from two-component hybrid gel via

energy transfer process

Xinhua Cao,^{a,b} Haichuang Lan,^b Zhenhua Li, ^b Yueyuan Mao,^b Liming Chen,^b Yongquan Wu,^b Tao Yi*^b

^aCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
^bDepartment of Chemistry and Collaborative Innovation Center of Energy Materials, Fudan University, Shanghai 200433, China

solvent	1	1-Ir	
ethyl acetate	G	G'	
cyclohexane	G	G'	
petroleum ether	G	G'	
acetonitrile	G	G	
methanol	G	G	
toluene	G	G'	
acetone	G	G'	
ethanol	G	G'	
tetrahydrofuran	G	G'	
dioxane	G	S	
dichloromethane	G	G'	
chloroform	S	S	
carbon tetrachloride	G	G'	
dimethyl sulfoxide	G	G	
Dimethyl formamide	PG	G	
hexane	G	G'	
liquid paraffin	G	G'	
propanol	G	G'	
1-hexanol	G	G'	
^{a}S = solution; PG = partial gel; G = gel; G'= gel with existence of			
insoluble solid Ir; $[1] = 25 \text{ mg mL}^{-1}$; $[1+Ir] = 25 \text{ mg mL}^{-1}$.			

Table S1. Gelation properties of compound 1, 1-Ir (0.5 eq) in various solvents.^a

Figure S1 The absorption spectra of the two complexes obtained from the DFT calculation: a) for complex Ir ($[Ir(bt)_2(acac)]$; b) for $[Ir(pba)_2(Phen)]PF_6$.

Figure S2 The fluorescence emission spectrum of Ir without and with 1.0 eq of 1 with the excitation of 356 nm (C = 1.0×10^{-5} M).

Figure S3. Images of gels 1 (a and b) and 1-Ir (c and d); a and c, under a bright lamp; b and d, in the dark under illumination of 365 nm light ($c_1 = 25 \text{ mg mL}^{-1}$).

Efficiency of energy transfer (E) can be obtained from following equation:

$$E = 1 - \frac{\tau_{DA}}{\tau_D}$$

In this equation, τ_{DA} is the fluorescence lifetime of the donor in the presence of the acceptor and τ_D is the fluorescence lifetime of the donor in the absence of the acceptor.

The equation used to fit the exponential decay curve:

$$Fit = A + B_1 \cdot e^{\binom{-t}{\tau_1}} + B_2 \cdot e^{\binom{-t}{\tau_2}} + B_3 \cdot e^{\binom{-t}{\tau_3}} + B_4 \cdot e^{\binom{-t}{\tau_4}}$$

The equation formula used to calculate the overlapping integral (J) and the distance between donor and acceptor (r):

$$J = \int_{0}^{\infty} dv \frac{f_{\rm D}(v) \varepsilon_{\rm A}(v)}{v^4}$$

In this equation, $f_D(v)$ is the fluorescence emission of donor under normalization, $\varepsilon_a(v)$ is the molar extinction coefficient at wavelength of v.

$$E = R_0^6 / (r^6 + R_0^6)$$

E is the Energy transfer efficiency; R_0 is the critical distance of Förster energy transfer; *r* is the actual distance between molecules

Figure S4 Lifetime decay profiles ($\lambda ex = 356$ nm, monitored at 430 nm) of 1 solution under addition of different amounts of Ir (0 – 0.6 eq) in acetonitrile (c = 1.0×10^{-5} M).

Figure S5 Lifetime decay profiles ($\lambda ex = 356 \text{ nm}$, monitored at 430 nm) of gel 1 (25 mg mL⁻¹) and 1-Ir (0.5 eq) gel in acetonitrile.

Figure S6 Lifetime decay profiles ($\lambda ex = 356$ nm, monitored at 563 nm) of gel 1-Ir (25 mg mL⁻¹) and 1-Ir solution in acetonitrile ($c_1 = 4 \times 10^{-5}$ M, $c_{Ir} = 2 \times 10^{-5}$ M).

Figure S7 Lifetime decay profiles ($\lambda ex = 430$ nm, monitored at 563 nm) of gel **1-Ir** (25 mg mL⁻¹) and **1-Ir** solution in acetonitrile ($c_1 = 4 \times 10^{-5}$ M, $c_{Ir} = 2 \times 10^{-5}$ M).