Supporting information

Alcohol-Soluble Interfacial Fluorenes for Inverted Polymer Solar Cells: Sequence Induced Spatial Conformation Consequently Dipole Moment

Lie Chen^{*a,b*}, Xiangfu Liu^{*a*}, Yingkai Wei^{*a*}, Feiyan Wu^{*a*}, Yiwang Chen^{**a,b*}

^aCollege of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

^bJiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

Corresponding author. Tel.: +86 791 83968703; fax: +86 791 83969561. E-mail:

ywchen@ncu.edu.cn (Y. Chen)

Lie Chen and Xiangfu Liu contributed equally to this work.

General measurements and characterization.

The nuclear magnetic resonance (NMR) spectra were collected on a Bruker ARX 400 NMR spectrometer with deuterated chloroform as the solvent and with tetramethylsilane (δ =0) as the internal standard. The photoluminescence spectroscopy (PL, Hitachi F-7000), transmittance spectroscopy, UV-vis-NIR spectroscopy, diffuse reflectance spectroscopy (performed by PerkinElmer Lambda 750 with integrating sphere) were utilized. The UPS measurements were carried out in a Thermo-VG Scientific ESCALAB 250 using a He I (21.22 eV) discharge lamp. A bias of -8.0 V was applied to the samples for separation of the sample and the secondary edge for the analyzer. XPS studies were performed on a Thermo-VG Scientific ESCALAB 250 photoelectron spectrometer using a monochromated AlKa (1,486.6 eV) X-ray source. All recorded peaks were corrected for electrostatic effects by setting the C-C component of the C 1s peak to 284.8eV. The base pressure in the XPS analysis chamber was 2×10^{-9} mbar. Atomic force microscopic (AFM) images were measured on a nanoscope III A (Digital Instruments) scanning probe microscope using the tapping mode. TEM images were recorded using a JEOL-2100F transmission electron microscope and an internal charge-coupled device (CCD) camera.

Cyclic voltammetry.

Cyclic voltammetry was performed in an electrolyte solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile, both working and counter electrodes were platinum electrode. Ag/AgCl electrode was used as thereference electrode (Figure S1).

Space-charge-limited-current (SCLC) mobility measurement.

In order to characterize the carrier mobility of modified device, electron-only devices and hole-only devices were fabricated. The electron-only devices used a diode configuration of ITO/ETLs/P3HT:PCBM/LiF/Al The carrier mobility was measured using the SCLC model at low voltage which is described by below Equation:¹

$$J=9\varepsilon_0\varepsilon_r\mu V^2/8L^3$$

Where ε_0 is the permittivity of free space (8.85 × 10⁻¹² F·m⁻¹), ε_r is the dielectric constant of P3HT or PCBM (assumed to 3), μ is the mobility of an electron, V is the applied voltage, and L is the film thickness.² The thickness of the BHJ blend for SCLC measurement was about 120 nm. By fitting the results to a space-charge-limited form, $J^{0.5}$ versus V is plotted in **Figure 5c**.

Figure S1. The SMEs dissolved in the methanol/chlorobenzene mixed solution

Figure S2. Normalized UV-vis absorption spectra of TFTN-Br, FTFN-Br and FTTFN-Br in their film state and solution

Figure S3. The optical transmittance spectra of the TFTN-Br, FTFN-Br, FTTFN-Br and bare ITO.

Figure S4. Cyclic voltammogram of TFTN-Br, FTFN-Br and FTTFN-Br films in an acetonitrile solution of 0.1 M Bu_4NPF_6 at a scan rate of 50 mV S⁻¹.

compound	$\lambda_{abs, max}$ (solution) (nm)	$\lambda_{abs, max}$ (film) (nm)	Eg ^{opt} (eV)	Eg ^{CV} (eV)	HOMO (eV)	LUMO (eV)
TFTN-Br	361	366	2.95	2.56	-5.16	-2.60
FTFN-Br	378	390	2.81	2.51	-5.34	-2.83
FTTFN-Br	403	411	2.55	2.20	-5.20	-3.00

Table S1. Optical and electrochemical properties of the SMEs

Figure S5. The density functional theory calculated results of the FFN-Br

Figure S6. Water contact angle images of (a) bare ITO, (b) ITO/TFTN-Br (c) ITO/FTFN-Br and (d) ITO/FTTFN-Br

Figure S7. Stability test of the unencapsulated I-PSCs with various CSEs (a) PCE; (b) V_{oc} ; (c) J_{sc} ; (d) FF.

Reference

- H. Wei, H. Zhang, H. Sun, W. Yu, Y. Liu, Z. Chen, L. Cui, W. Tian and B. Yang, J. Mater. Chem., 2012, 22, 17827-17832.
- H. C. Chen, C. W. Lai, I. C. Wu, H. R. Pan, I. W. P. Chen, Y. K. Peng, C. L. Liu, C. h. Chen and P. T. Chou, *Adv. Mater.*, 2011, 23, 5451-5455.