An ionic charge-transfer dyad prepared cost-effectively from

tetrathiafulvalene carboxylate anion and TMPyP cation

Li-Jun Xue, Peng Huo, Yan-Hong Li, Jin-Le Hou, Qin-Yu Zhu* and Jie Dai*

 Table S1. Crystal Data and Structural Refinement Parameters for 1 and 2.

 Table S2. The energy of the frontier orbitals and the energy gaps of 2.

Chart S1 Structure of TTF(CONH₂)₂.

Fig. S1 Frontier molecular orbitals of 2 calculated using DFT B3LYP/6-311G** method.

Fig. S2 UV-vis absorption of crystals 1 and 2 in DMF in different concentrations.

Fig. S3 Partial ¹H NMR spectra of TMPyP and the mixture of TMPyP and 4eq. $TTF(CONH_2)_2$ in *d*6-DMSO (the concentration of TMPyP is 4×10^{-3} mol·L⁻¹).

Fig. S4 Comparison of the fluorescence spectra of 2 ($\lambda ex = 488 \text{ nm}$) with that of TMPyP ($\lambda ex = 470 \text{ nm}$), recorded at 1.0×10^{-3} and $5.0 \times 10^{-4} \text{ mol}\cdot\text{L}^{-1}$ concentrations in DMF at room temperature.

Fig. S5 The relationship between the quenching degree of the fluorescence spectra at the peak of 652 nm and the concentration of 1 [Y-axis (quenching degree) = (fluorescence intensity of TMPyP – fluorescence intensity of 1)/ fluorescence intensity of TMPyP].

Fig. S6 Fluorescence spectra of TMPyP, 1, and 2 in solid state at room temperature.

Fig. S7 Changes of fluorescence spectra of TMPyP in DMF at room temperature, upon quantitative titration of $TTF(CONH_2)_2$.

Fig. S8 Changes of fluorescence spectra of TMPyP $(2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ in DMF at room temperature, upon addition of increasing amounts of L¹ and L².

	1	2
formula	$C_{84}H_{72}N_8O_{19}S_{24}$	$C_{64}H_{52}N_8O_{21}S_8$
fw	2267.07	1525.61
cryst size (mm ³)	$0.25\times0.26\times0.75$	$0.05 \times 0.12 \times 0.20$
cryst syst	monoclinic	monoclinic
space group	$P 2_1/m$ $C 2/c$	
<i>a</i> (Å)	10.8302(4)	23.6681(8)
<i>b</i> (Å)	33.4895(16)	22.0587(6)
<i>c</i> (Å)	13.8319(6)	13.2272(4)
α (deg)	90.00	90.00
β (deg)	99.191(4)	111.589(3)
γ (deg)	90.00	90.00
$V(Å^3)$	4952.4(4)	6421.3(4)
Ζ	2	4
$ ho_{ m calcd} ({ m g}{ m cm}^{-3})$	1.492	1.578
<i>F</i> (000)	2300	3152
μ (mm ⁻¹)	5.376	0.365
$T(\mathbf{K})$	T(K) 293(2) 293(2	
reflns collected	20829	19610
unique reflns	9892	5651
observed reflns	6181	4629
no. params	638	486
GOF on F^2	1.182	1.034
$R_1[I>2\sigma(I)]$	0.0837	0.0401
$_{W}R_{2}$ [I>2 $\sigma(I)$]	0.1767	0.1063

Table S1. Crystal Data and Structural Refinement Parameters for 1 and 2

Table S2. The energy of the frontier orbitals and the energy gaps of 2.

orbital	energy (eV)	energy gap
LUMO+1	-3.132	$E_{\text{LUMO+1}} - E_{\text{HOMO}} = 1.164 \text{ eV} (1065.2 \text{ nm})$
LUMO	-3.259	$E_{\text{LUMO+1}} - E_{\text{HOMO-1}} = 1.171 \text{ eV} (1058.8 \text{ nm})$
НОМО	-4.296	$E_{\rm LUMO} - E_{\rm HOMO} = 1.001 \text{ eV} (1238.6 \text{ nm})$
НОМО-1	-4.303	$E_{\text{LUMO}} - E_{\text{HOMO-1}} = 1.044 \text{ eV} (1187.6 \text{ nm})$

Chart S1 Structure of TTF(CONH₂)₂.

Fig. S1 Frontier molecular orbitals of 2 calculated using DFT B3LYP/6-311G** method.

Fig. S2 UV-vis absorption of crystals 1 and 2 in DMF in different concentrations.

Fig. S3 Partial ¹H NMR spectra of TMPyP and the mixture of TMPyP and 4eq. $TTF(CONH_2)_2$ in *d*6-DMSO (the concentration of TMPyP is 4×10^{-3} mol·L⁻¹).

Fig. S4 Comparison of the fluorescence spectra of 2 ($\lambda ex = 488 \text{ nm}$) with that of TMPyP ($\lambda ex = 470 \text{ nm}$), recorded at 1.0×10^{-3} and $5.0 \times 10^{-4} \text{ mol}\cdot\text{L}^{-1}$ concentrations in DMF at room temperature.

Fig. S5 The relationship between the quenching degree of the fluorescence spectra at the peak of 652 nm and the concentration of 1 [Y-axis (quenching degree) = (fluorescence intensity of TMPyP – fluorescence intensity of 1)/ fluorescence intensity of TMPyP].

Fig. S6 Fluorescence spectra of TMPyP, 1, and 2 in solid state at room temperature.

Fig. S7 Changes of fluorescence spectra of TMPyP in DMF at room temperature, upon quantitative titration of $TTF(CONH_2)_2$.

Fig. S8 Changes of fluorescence spectra of TMPyP ($2.0 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$) in DMF at room temperature, upon quantitative titration of L¹ and L².