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1 Dispersion relation of the double-layer graphene sheets

For the two dimensional double-layer graphene sheets, each single graphene layer with one

atom thickness can be treated as a boundary with optical conductivity σ, and the whole space

is separated into three regions, as illustrated in Figure S1. The corresponding x components
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of magnetic fields read

Hx =


H1 exp

[
α1

(
y +

g

2

)]
exp(iβz), y < −g/2,

(Ha coshαgy +Hb sinhαgy) exp(iβz), |y| ≤ g/2,

H2 exp
[
−α1

(
y − g

2

)]
exp(iβz), y > g/2,

(1)

where α2
1 = β2 − ϵ1k

2
0 and α2

g = β2 − ϵgk
2
0.
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Figure S1: Sketch of the two dimensional double-layer graphene sheets.

By matching the boundary conditions at y = ±g/2

Hx1 −Hx2 = σEz1,

Ez1 = Ez2,

Hx2 −Hx3 = σEz3,

Ez2 = Ez3,

(2)

one has

H1
α1ϵg
ϵ1αg

= −Ha sinh
(
αg

g

2

)
+Hb cosh

(
αg

g

2

)
,

H2
α1ϵg
ϵ1αg

= −Ha sinh
(
αg

g

2

)
−Hb cosh

(
αg

g

2

)
,

H1

(
1 +

iα1σ

ϵ0ϵ1ω

)
= Ha cosh

(
αg

g

2

)
−Hb sinh

(
αg

g

2

)
,

H2

(
1 +

iα1σ

ϵ0ϵ1ω

)
= Ha cosh

(
αg

g

2

)
+Hb sinh

(
αg

g

2

)
.

(3)
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For the even mode, H1 = H2 is required so that we have

Ha = −H1
α1ϵg
ϵ1αg

1

sinh
(
αg

g

2

) ,
Hb = 0,

(4)

while H1 = −H2 in case of the odd mode, then

Ha = 0,

Hb = H1
α1ϵg
ϵ1αg

1

cosh
(
αg

g

2

) . (5)

As a result, the magnetic fields can be rewritten as

Hx =


H1 exp

[
α1

(
y +

g

2

)]
exp(iβz), y < −g/2,

−H1
α1ϵg
ϵ1αg

coshαgy

sinh (αgg/2)
exp(iβz), |y| ≤ g/2,

H1 exp
[
α1

(
y − g

2

)]
exp(iβz), y > g/2,

(6)

for the even mode, and

Hx =


H1 exp

[
α1

(
y +

g

2

)]
exp(iβz), y < −g/2,

H1
α1ϵg
ϵ1αg

sinhαgy

cosh (αgg/2)
exp(iβz), |y| ≤ g/2,

−H1 exp
[
α1

(
y − g

2

)]
exp(iβz), y > g/2,

(7)

for the odd mode.

Based on eq 3 and further considering the characteristics of the even and odd modes

in eqs 4 and 5, the dispersion relations can be retrieved with some simple mathematical

manipulations 
tanh

(
αg

g
2

)
=

iα1ϵ0ϵgω

αg(α1σ − iϵ0ϵ1ω)
, even mode,

tanh
(
αg

g
2

)
= − iα1αgσ + αgϵ0ϵ1ω

α1ϵ0ϵgω
, odd mode.

(8)
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Let the factor

Γ =
αgϵ1
ϵgα1

(
1 + i

α1σ

ϵ0ϵ1ω

)
, (9)

then, the dispersion relations are cast into


tanh

(αgg

2

)
= − 1

Γ
, even mode,

tanh
(αgg

2

)
= −Γ, odd mode.

(10)

2 Analytical formulae for the effective mode indices of

the double-layer graphene sheets

Based on the obtained dispersion relations in eqs 8 and 10, the effective mode indices for

both the even and odd modes can be obtained in terms of the definition neff = β/k0. For

the air background, ϵg = ϵ1 = 1 and αg = α1, the dispersion relations can be rewritten as


tanh (t) =

−1

1 + i
α1σ

ϵ0ϵ1ω

, even mode,

tanh (t) = −
(
1 + i

α1σ

ϵ0ϵ1ω

)
, odd mode,

(11)

with t = α1g/2. Due to the fact that ℑ[α1g/2] ∼ 0 and 0 < ℜ[α1g/2] ≪ 1 for the strongly

coupled optical fields in the concerned system, we thus have tanh(t) ≈ t so that the dispersion

relations can be simplified into


t+ 1 + 2i

σ

ϵ0ωg
t2 = 0, even mode,

t

(
1 +

2iσ

ϵ0ωg

)
+ 1 = 0, odd mode.

(12)

By solving eq 12, we obtain


t = i

ϵ0ωg

4σ
+

√
ϵ0ωg

4σ

√
8iσ − ϵ0ωg, even mode,

t =
−ϵ0ωg

ϵ0ωg + 2iσ
, odd mode.

(13)

S4



For the doped graphene monolayer in the main text, the optical conductivity is given by

σ = σr + iσi =
e2EF

πℏ2
i

ω + iτ−1
, (14)

Taking into account the condition ωτ ≫ 1, we can obtain the real and imaginary parts of

the optical conductivity in simple forms

σr ≈
e2EF

πℏ2
τ−1

ω2
,

σi ≈
e2EF

πℏ2
1

ω
,

(15)

where σi ≫ σr in virtue of ωτ ≫ 1. Then, the factors (8iσ− ϵ0ωg) = −(8σi+ ϵ0ωg)+8iσr ≈

−(8σi + ϵ0ωg), t = α1g/2 ≈ βg/2 = k0neffg/2, and σ ≈ iσi, we can obtain the real parts of

the effective mode indices associated, respectively, with the even and odd modes


ℜ[nb

eff] ≈
√
C2

1/g + C2
0 + C0, even mode,

ℜ[na
eff] ≈

2C0

1− C0k0g
, odd mode,

(16)

where Z0 =
√
µ0/ϵ0 is the wave impedance in vacuum, and the coefficients

C0 =
k0
4
C2

1 =
πℏ2ω

2Z0e2EF

,

C1 =

√
2π

µ0

ℏ
e

1√
EF

.

(17)

To examine the approximations used in deriving the analytical formulae in eq 16, we

calculate the real parts of effective mode indices as the functions of the gap distance for the

system with the parameters of Figure 3 in the main text based on the analytical expressions,

in comparison with the corresponding results obtained with the rigorous numerical calcu-

lation of eq 11. They are in perfect agreement with each other, as indicated by the blue

dashed lines and green solid lines in Figure S2, justifying the analysis.
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Figure S2: The real part of the effective mode indices versus the gap distance for the even
mode (binding state) and the odd mode (anti-binding state).

3 Analytical formulae for the optical forces between

the double-layer graphene sheets

Region 2

Region 3

Region 1

Figure S3: Sketch of the integral curve for the calculations of the optical binding and anti-
binding forces. The red closed curve denotes the integral contour with the width L and the
thickness δ.

The optical binding and anti-binding forces can also be calculated by use of the integral

of the Maxwell’s stress tensor along an arbitrary closed contour illustrated in Figure S3

f =

∮
C

⟨ ¯̄T⟩ · dS. (18)
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For the graphene monolayer, the optical forces per unit length read

f =

∫
L

dx⟨ ¯̄T3⟩ · ey +

∫
L

dx⟨ ¯̄T2⟩ · (−ey) +

∫
δ

dy⟨ ¯̄T⟩ · ex +

∫
δ

dy⟨ ¯̄T⟩ · (−ex), (19)

where δ is the thickness of the graphene layer, L is the width of the graphene layer in the

closed integral contour, and ⟨ ¯̄Ti⟩ is the time-averaged Maxwell’s stress tensor in Region i

(with i = 2, 3). Considering graphene plasmons of the TM mode (Ey, Ez, Hx), with δ ≪ L

and the independence of the field profile on x coordinate, the optical force is reduced to

f = ⟨ ¯̄T3⟩ · eyL+ ⟨ ¯̄T2⟩ · (−ey)L =
(
⟨ ¯̄T3⟩ − ⟨ ¯̄T2⟩

)
· eyL. (20)

Finally, the y component of optical forces can be expressed in a simpler form

fy = (Tyy|3 − Tyy|2)L, (21)

with

Tyy|i =
1

4
ℜ
[
ϵ0ϵr|Eyi|2 − ϵ0ϵr|Ezi|2 − µ0µr|Hxi|2

]
. (22)

At the position y = g/2, the z component of the electric field Ez is continuous when

crossing the interface from Region 3 to Region 2, so the term |Ez|2 has no contribution to

the optical forces. The optical force fy can therefore be rewritten as

fy =
L

4
ℜ
[
ϵ0ϵr3|Ey3|2 − µ0µr3|Hx3|2

]
− L

4
ℜ
[
ϵ0ϵr2|Ey2|2 − µ0µr2|Hx2|2

]
=

ϵ0L

4

(
|Ey3|2ℜ[ϵr3]− |Ey2|2ℜ[ϵr2]

)
− µ0L

4

(
|Hx3|2ℜ[µr3]− |Hx2|2ℜ[µr2]

)
.

(23)

After using Ey = − β
ωϵ0ϵr

Hx obtained from Maxwell’s equations, for the non-magnetic back-

ground medium with µr3 = µr2 = 1, the optical force fy is cast into

fy = L

(
|β|2ℜ[ϵr3]
4ω2ϵ0|ϵr3|2

− µ0

4

)
|Hx3|2 − L

(
|β|2ℜ[ϵr2]
4ω2ϵ0|ϵr2|2

− µ0

4

)
|Hx2|2. (24)
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For the air background with ϵr3 = ϵr2 = 1, the optical force is further reduced to

fy =
µ0L

4

(
|β|2

k2
0

− 1

)(
|Hx3|2 − |Hx2|2

)
=

µ0L

4

(
|neff|2 − 1

) (
|Hx3|2 − |Hx2|2

)
.

(25)

Considering the fact that the effective mode indices of the double-layer graphene are much

larger than one, when the Hx is strongly discontinuous, an extremely strong optical force can

be obtained according to eq 25. As evidenced in Figure S4, we can see that the x component

of magnetic fields in regions 2 and 3 exhibit dramatic discontinuity, concretely, |Hx3| ≪ |Hx2|

for the even mode and |Hx3| ≫ |Hx2| for the odd mode. As a result, the attractive optical

binding force is associated with the even mode, while the repulsive optical anti-binding force

is associated with odd mode.

For the convenience of interpretation, the optical forces should be normalized by the total

optical power Pz coupled into the double-layer graphene sheets with

Pz = L

∫ − g
2

−∞
⟨Sz1⟩dy + L

∫ g
2

− g
2

⟨Sz2⟩dy + L

∫ ∞

g
2

⟨Sz3⟩dy, (26)

where ⟨Szi⟩ = 1
2ωϵ0

ℜ[ β
ϵri
]|Hxi|2 is z component of the Poynting vector with (i = 1, 2, 3),

corresponding to three different regions. By dividing the optical force in eq 25 with the

optical power in eq 26, we can obtain the normalized optical binding force associated with

the even mode

F b
y =

fy
Pz

= −
(α2

1 − α∗2
1 ) (|β|2 − k2

0)
(
eα

∗
1g + eα1g

)
4ωℜ[β] (α∗

1e
α1g − α1eα

∗
1g + 2ieα

∗
1geα1gℑ[α1])

, (27)

and the normalized optical anti-binding force associated with the odd mode

F a
y = −

(α2
1 − α∗2

1 ) (|β|2 − k2
0)
(
eα

∗
1g + eα1g

)
4ωℜ[β] (α∗

1e
α1g − α1eα

∗
1g − 2ieα

∗
1geα1gℑ[α1])

. (28)
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Figure S4: Absolute values of the x component of magnetic fields |Hx| corresponding to
the even (a) and odd (b) modes are plotted as the functions of y coordinate based on the
FEM. All the other parameters are those used in the main text except the gap distance
g = 3 nm. The insets are the amplified view of the field profiles for the even (c) and odd
(d) modes in the region −3 nm< y < 3 nm, where three regions are marked with colored
backgrounds, serving as the guide to the eye. The narrow whiteout regions in the insets
denote the graphene layers.

With the identical relations ℜ[eA+iB] = eA cosB and ℑ[eA+iB] = eA sinB, the optical binding

and anti-binding forces can be rewritten as


F b
y = −(|β|2 − k2

0)ℜ[α1]ℑ[α1]e
Re[α1]g cos(ℑ[α1]g)

ωℜ[β] (ℑ[α∗
1e

α1g] + ℑ[α1]e2ℜ[α1]g)
, even modes,

F a
y = −(|β|2 − k2

0)ℜ[α1]ℑ[α1]e
Re[α1]g cos(ℑ[α1]g)

ωℜ[β] (ℑ[α∗
1e

α1g]−ℑ[α1]e2ℜ[α1]g)
, odd modes.

(29)

Considering ℑ[α∗
1e

α1g] = ℑ[α∗
1]ℜ[eα1g] + ℜ[α∗

1]ℑ[eα1g], ℑ[α∗
1] = −ℑ[α∗

1], and ℜ[α∗
1] = ℜ[α∗

1],
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the factors ℑ[α∗
1e

α1g]±ℑ[α1]e
2ℜ[α1]g in the denominators of eq 29 become

I ≡ ℑ[α∗
1e

α1g]±ℑ[α1]e
2ℜ[α1]g

= ℑ[α1]
(
±e2ℜ[α1]g −ℜ[eα1g]

)
+ ℜ[α1]e

ℜ[α1]g sin(ℑ[α1]g)

= ℜ[α1]e
ℜ[α1]g sin(ℑ[α1]g)±ℑ[α1]

(
∓eℜ[α1]g cos(ℑ[α1]g) + e2ℜ[α1]g

)
=

[
ℜ[α1] sin(ℑ[α1]g)±ℑ[α1]

(
eℜ[α1]g ∓ cos(ℑ[α1]g)

)]
eℜ[α1]g,

(30)

then, the optical binding and anti-binding forces read


F b
y = − (|β|2 − k2

0)ℜ[α1]ℑ[α1] cos(ℑ[α1]g)

ωℜ[β] [ℜ[α1] sin(ℑ[α1]g) + ℑ[α1] (eℜ[α1]g − cos(ℑ[α1]g))]
, even mode,

F a
y = − (|β|2 − k2

0)ℜ[α1]ℑ[α1] cos(ℑ[α1]g)

ωℜ[β] [ℜ[α1] sin(ℑ[α1]g)−ℑ[α1] (eℜ[α1]g + cos(ℑ[α1]g))]
, odd mode.

(31)

Because ℑ[α1]g ≪ 1, k2
0 ≪ |β|2 and ℑ[β] ≪ ℜ[β], cos(ℑ[α1]g) ≈ 1, and sin(ℑ[α1]g) ≈ ℑ[α1]g,

the optical binding and anti-binding forces can be simplified into

F b
y ≈ − |β|2ℜ[α1]ℑ[α1]

ωℜ[β] [ℜ[α1]ℑ[α1]g + ℑ[α1] (eℜ[α1]g − 1)]

≈ −ℜ[neff]

c

ℜ[α1]

ℜ[α1]g + (eℜ[α1]g − 1)
,

(32)

and

F a
y ≈ − |β|2ℜ[α1]ℑ[α1]

ωℜ[β] [ℜ[α1]ℑ[α1]g −ℑ[α1] (eℜ[α1]g + 1)]

≈ −ℜ[neff]

c

ℜ[α1]

ℜ[α1]g − (eℜ[α1]g + 1)
.

(33)
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