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1 Dispersion relation of the double-layer graphene sheets

For the two dimensional double-layer graphene sheets, each single graphene layer with one
atom thickness can be treated as a boundary with optical conductivity o, and the whole space

is separated into three regions, as illustrated in Figure S1. The corresponding x components
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of magnetic fields read

Hyexp [an (y+ 3 )| exp(is2), y<—g/2,
Hy =14 (H,coshayy+ Hysinhayy)exp(ifz), |y| < g/2, (1)
Hyexp a1 (y— )| ewliB),  y>g/2

2 2 2 2
where of = 32 — €,k% and a = % — €4kg.
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Figure S1: Sketch of the two dimensional double-layer graphene sheets.

By matching the boundary conditions at y = +¢/2

H:rl - H:L"Q = UEzlv

Ezl - E227
(2)
HzZ - Hm3 - UEz37
Ez2 - Ez?n
one has
Hlﬁ = —H, sinh ( g) + Hp cosh (agg>
€10y 2 2
H, i€ _ = —H,sinh ( ) H, cosh < )
€10ég (3)

99 99)"
H; <1 + iad i ) = H, cosh (a 2) Hjsinh < )
€0E1W 99
Ho (1 -+ zam) = H, cosh (a ) )

€pE1W
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For the even mode, H; = H, is required so that we have

Ha _ _H1a1€g 1

Hb:O,

while H; = —H, in case of the odd mode, then

H, =0,

a€g 1

e1v AN
1%g cosh (ag§>

Hb:Hl

As a result, the magnetic fields can be rewritten as

Hyexp |ar (y+5)| exp(iBz),  y < —g/2.
1€, coshayy

Hm N _H 1 J ) S 27
161ag sinh (a,g/2) exp(ifz), |yl <g/
Hyexp |og (?J - g) exp(iBz), vy > g/2,

for the even mode, and

Hy exp [051 (y + g)] exp(ifz), y<—g/2,

2
1€, sinhagy ‘
Hx - H Y < 27
"era, cosh (ayg/2) exp(ifz) lyl < g/

—H;exp [al <y — %)} exp(ifz), y > g/2,

for the odd mode.

Based on eq 3 and further considering the characteristics of the even and odd modes

in eqs 4 and 5, the dispersion relations can be retrieved with some simple mathematical

manipulations
10 €Q€ W
tanh (a,2) = g . even mode,
ag(aio —iepew)
110 + QL €p€1W
tanh (agg) = — g g , odd mode.

1 €g€gW
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Let the factor

then, the dispersion relations are cast into

(10)

£
Q

1
tanh <Tg> = even mode,
tanh (

5 ) = —I', odd mode.

2 Analytical formulae for the effective mode indices of
the double-layer graphene sheets

Based on the obtained dispersion relations in eqs 8 and 10, the effective mode indices for
both the even and odd modes can be obtained in terms of the definition neg = 3/ky. For

the air background, ¢, = €¢; = 1 and o, = a4, the dispersion relations can be rewritten as

-1
tanh (t) = ——=—+ even mode,

1 T . 1o
7
€EpE1W (11)

tanh (t) = — (1 il ) , odd mode,

€pE1W

with ¢ = a19/2. Due to the fact that S[ang/2] ~ 0 and 0 < R[a19/2] < 1 for the strongly
coupled optical fields in the concerned system, we thus have tanh(¢) & ¢ so that the dispersion

relations can be simplified into

tr142i-2 2 = 0, even mode,
€ow
22'00 I (12)
t (1 + ) +1=0, odd mode.
€Wy

By solving eq 12, we obtain

NG,
t= €0w9 o \/820 — €owg, even mode,
‘l_ffeowg (13)
t= —m, odd mode.
€owg + 2i0
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For the doped graphene monolayer in the main text, the optical conductivity is given by

62EF 1

Th? w4 ir~t

o=o0,+10; =

(14)

Taking into account the condition w7t > 1, we can obtain the real and imaginary parts of

the optical conductivity in simple forms

€2EF 71
Th? w?’
€2EF 1 <15)

oy X

o; =
Th? w’

where 0; > o, in virtue of wr > 1. Then, the factors (8ic — eqwg) = —(80; + €owg) + 8io, ~
—(80; + €qwg), t = a1g/2 = Bg/2 = konegg/2, and o ~ io;, we can obtain the real parts of

the effective mode indices associated, respectively, with the even and odd modes

Rlneg) = /CF/g + C§ + Co,  even mode, )
2C,
R[nls| ~ m, odd mode,

where Zy = \/ 110/ € is the wave impedance in vacuum, and the coefficients

Co=—202=__—*_
0 4 ! 2Z0€2EF’

o 2rh 1
' V 1o e VER

To examine the approximations used in deriving the analytical formulae in eq 16, we

(17)

calculate the real parts of effective mode indices as the functions of the gap distance for the
system with the parameters of Figure 3 in the main text based on the analytical expressions,
in comparison with the corresponding results obtained with the rigorous numerical calcu-
lation of eq 11. They are in perfect agreement with each other, as indicated by the blue

dashed lines and green solid lines in Figure S2, justifying the analysis.
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Figure S2: The real part of the effective mode indices versus the gap distance for the even
mode (binding state) and the odd mode (anti-binding state).

3 Analytical formulae for the optical forces between

the double-layer graphene sheets
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Figure S3: Sketch of the integral curve for the calculations of the optical binding and anti-
binding forces. The red closed curve denotes the integral contour with the width L and the
thickness 9.

The optical binding and anti-binding forces can also be calculated by use of the integral

of the Maxwell’s stress tensor along an arbitrary closed contour illustrated in Figure S3

Fe ]{C<T> dS. (18)
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For the graphene monolayer, the optical forces per unit length read

£ [ dale,t [dn (et [an®) et [a®) (e ()

where ¢ is the thickness of the graphene layer, L is the width of the graphene layer in the
closed integral contour, and <'i‘z> is the time-averaged Maxwell’s stress tensor in Region ¢
(with ¢ = 2,3). Considering graphene plasmons of the TM mode (E,, E,, H,), with 6 < L

and the independence of the field profile on x coordinate, the optical force is reduced to

f=(Ts)-e,L+(Ta) - (—e,)L = ((T3) = (T2)) - e, L. (20)
Finally, the y component of optical forces can be expressed in a simpler form

fy = (Tyy|3 - Tyy|2) L, (21)

with

1
Tyy|i - Z% [€0€r|Eyi‘2 - €0€r|Ezi|2 - MOMT’HIi|2:| . (22)

At the position y = ¢g/2, the z component of the electric field £, is continuous when
crossing the interface from Region 3 to Region 2, so the term |E.|* has no contribution to

the optical forces. The optical force f, can therefore be rewritten as

L L
fy= Z% [coeral Eysl® — poprs| Hus|*] — Z% [cora| Byl — ptopira| Hool”]

€L L
= 2 (1B, Rlers] — | By Rlera]) — 5= (1Has " Rlpga] — | Huo*Rlpusa])

(23)

B

weger

After using E, = —

H, obtained from Maxwell’s equations, for the non-magnetic back-

ground medium with g3 = p,2 = 1, the optical force f, is cast into

o= (LRt g (LRt e e

4w2€0|€r3|2 4w260’67~2|2
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For the air background with €,.3 = €,5 = 1, the optical force is further reduced to

oL (B[
o= "5 (U 1) (P - 1H?)
_ ol

4

(25)
(|neff|2 - 1) (|Ha:3|2 - |H:v2|2) .

Considering the fact that the effective mode indices of the double-layer graphene are much
larger than one, when the H, is strongly discontinuous, an extremely strong optical force can
be obtained according to eq 25. As evidenced in Figure S4, we can see that the x component
of magnetic fields in regions 2 and 3 exhibit dramatic discontinuity, concretely, | H,3| < |Hys|
for the even mode and |H,3| > |H,o| for the odd mode. As a result, the attractive optical
binding force is associated with the even mode, while the repulsive optical anti-binding force
is associated with odd mode.

For the convenience of interpretation, the optical forces should be normalized by the total

optical power P, coupled into the double-layer graphene sheets with

i}

P=1 / Sy + L / (Sa)dy+ L / (Sua)dy, (26)

_g
o0 2 2

where (S.;) = Qu}eO?R[%HHmiP is z component of the Poynting vector with (i = 1,2,3),
corresponding to three different regions. By dividing the optical force in eq 25 with the
optical power in eq 26, we can obtain the normalized optical binding force associated with
the even mode

_ Ty _ (a2 —a3?) (|8* — k2) (@aig + ealg)
YP 4wR[B] (afe®9 — qpe®19 + 2419195y ])’

and the normalized optical anti-binding force associated with the odd mode

o (03— a®) (B2 — k) (59 + o)
Y 4oR[B] (a9 — apetid — 2iei9ec1s|ay])”
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Figure S4: Absolute values of the z component of magnetic fields |H,| corresponding to
the even (a) and odd (b) modes are plotted as the functions of y coordinate based on the
FEM. All the other parameters are those used in the main text except the gap distance
g = 3 nm. The insets are the amplified view of the field profiles for the even (c) and odd
(d) modes in the region —3 nm< y < 3 nm, where three regions are marked with colored
backgrounds, serving as the guide to the eye. The narrow whiteout regions in the insets

denote the graphene layers.

With the identical relations R[eA+?5] = e cos B and e8] = e sin B, the optical binding

and anti-binding forces can be rewritten as

o _ (B = k) Rln]SanJe™ ) cos(Sfan]g)
B = T RG] Sloie ] + Sln]eBals) - (29)
o _ _(BP = kt) Rlaa]Son]e ™ cos(Slanlg) (0
Fy = WR[F] (S[ates] — S[ay|e2Rieils) ) dd modes.
Considering Sfafe*?] = S[af]R[e™?] + R{a]3[e?], Sfaf] = ~Sag], and Rfaf] = Rai],
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the factors S[ae®19] 4 Jlay]e?®lld in the denominators of eq 29 become

I

%[ * alg]j:\f[ ] 2R[a1]g

S ] (j:em[al]g — %[ealg]) + R[a R sin(Say]g)

I
=

[y ] ™91 sin (e ]g) + Sou] (:F@%[al]g cos(Say]g) + 629?[%}9)

= [Rlou] sin(S[ai]g) £ Sey] (eéﬁ[aﬂg T cos(S[aig))] eHlonls

then, the optical binding and anti-binding forces read

(18 = k§) Rlon]Sau] cos(Saa]g)

| even modade
B = R o) sin(Slenlg) + Slon] (@0 — cos(S[lg))] de.
. (112 — 1) Rlon]S{on] cos(Salg) I

Y wWR[B] [Rlan] sin(Slan]g) — Slaa] (M9 4 cos(Sfen]g))]’

Because Sa]g < 1, k2 < |8]* and S[8] < R[F], cos(S[ai]g) = 1, and sin(S[ay]g) ~

the optical binding and anti-binding forces can be simplified into

e 5P R{on ]S o]
v OR(B] RSl + Son] (eerls — 1)

R[nes] R[a |
¢ Rlou]g + (eRlls — 1)’

and

|81 R[] Sfon]
wR[] R[] S[an]g = Saa] (e¥lerls + 1))

R[nes] R[]
¢ Roaly — (Rl 4 1)°
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(31)

%[al]ga

(32)



