Supplementary Information

The mechanism of Controllable dehydrogenation: CPMD study of the

decomposition of M(BH₄)_x(NH₃)_y (M=Li, Mg)

Kun Wang*a,c, Jian-Guo Zhang*b, Xu-Qiang Langd

The total and partial density of states (DOS) of ALB and AMgB are showed in Figure S1.The total DOS of ALB is comprised of 3 groups. The states of the lowest energy at about -20 to -10 eV mainly consists of the N 2*s* states and small part of H(N) 1*s* states. The second region, around -10 to -4 eV, is filled by N 2*p* and B 2*s* states hybridized with H 1s states. The top of the valence band consists of B 2*p* and H(B) 1*s* states. Such distribution of the electronic states suggests the covalence properties of the B-N, N-H and B-H bonds and electrostatic relationship between Li⁺ and B.

For AMgB, it is similar with that of ALB where 3 groups are found in the total DOS map. The lowest energy part from -20 eV to -10 eV is contributed from N 2*s* states and small part of H(N) 1*s* states. The second energy region is filled by N 2*p* and B 2*s* states hybridized with H 1s states. The top of the valence band consists of B 2*p* and H(B) 1*s* states. But we can find an obvious overlap consists of the Mg 3*s* states and N 2*s* states around Fermi level. This covalence property proves Mg^{2+} polarizes part of N 2*s* orbitals.

^aDepartment of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China. Tel & Fax: +86 551 63861279, E-mail: <u>wangkun@ahu.edu.cn</u>

^bState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 P. R. China. Tel & Fax: +86 10 68918091, E-mail: <u>zjgbit@bit.edu.cn</u>

^cPhysical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom.

^dState Key Lab of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, PR China. E-mail: <u>langxuqiang0536@163.com</u>

Figure S1. The total and partial density of states (DOS) of ALB (Left) and AMgB (Right).

Figure S2. Theoverall decomposition scheme of ALB. (Red arrows highlight the dehydrogenation at high temperature theoretically)

Figure S3.Theoverall decomposition scheme of AMgB. (Red arrows highlight the steps of dehydrogenation, which is caused by the combination of dissociative hydrogen ions)

Temperature (K)	Steps (period)		
	ALB	AMgB	
100 K	0-20000 (0-2 ps)	0-20000 (0-2 ps)	
200 K	20001-40000 (2-4 ps)	20001-30000 (2-3 ps)	
300 K	40001-60000 (4-6 ps)	30001-40000 (3-4 ps)	
400 K	60001-80000 (6-8 ps)	40001-50000 (4-5 ps)	
500 K	80001-100000 (8-10 ps)	50001-60000 (5-6 ps)	
600 K	100001-130000 (10-13 ps)	60001-80000 (6-8 ps)	
700 K	130001-150000 (13-15 ps)		
800 K	150001-180000 (15-18 ps)		
900 K	180001-210000 (18-21 ps)		

Table S1 The relationship between the temperature and the steps' setting

Step	Intermediates	Time	Structures
		(ps)	
TS1	$Li \longrightarrow NH_3 \longrightarrow Li NH_3 \longrightarrow Li^+ + [NH_3]$	0.0245	
TS2	$Li^+ + [BH_4] \longrightarrow Li^{BH_4} \longrightarrow Li^{BH_4}$	0.2815	
TS3	$n[\text{LiBH}_4] \longrightarrow * \left[-\text{Li} - \text{B} - \text{Li} - \text{B} - \text{Li} - \text{B} - \text{H}_4 \right] *$ $\longrightarrow * \left[-\text{Li} - \text{B} - \text{Li} - \text{B} - \text{Li} - \text{B} - \text{Li} - \text{H}_4 \right] *$	0.5555	
TS4	$[LiBH_4] + [NH_3] \longrightarrow \begin{array}{c} BH_4 \\ \\ Li \\ NH_3 \end{array} \xrightarrow{BH_4} \\ Li \\ NH_3 \end{array} \xrightarrow{BH_4} \\ Li \\ NH_3 \end{array}$	0.8035	

Table S2 The structures of intermediates and the first time they appear in the decomposition of ALB

(Yellow: Li, pink: B, blue: N, white: H)

TS9	$LiBH_3 + NH_2^- \longrightarrow H_3B^{}NH_2$ $LiNH_2BH_3$	17.309	
TS10	$LiNH_2BH_3 + H_2 \xrightarrow{Li-\cdots-NHBH_3} Li-N-BH_3 + H_2 + H_1 + H_2 + H_2 + H_2 + H_1 + H_2 + H_2 + H_1 + H_2 + H_2 + H_1 + H_2 + H_$	18.113	
TS11	$H + Li-NH-BH_2 \longrightarrow Li-NH-BH_2 \longrightarrow Li-NH-BH_2 + H_2$ $H H H^{}H$	18.280	
TS12	$2\text{Li-NH-BH}_{2} \longrightarrow \begin{array}{c} & & \\ & & $	19.882	

Step	Intermediates	Time (ns)	Structures
TS1	H ₄ B-Mg-NH ₃	3.331	
TS2	BH ₄ H ₄ BMgNH ₃ NH ₃	3.524	
TS3	$ \begin{array}{c} * \overbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	3.6595	

Table S3 The structures of intermediates and the first time they appear in the decomposition of AMgB

(Green: Mg, pink: B, blue: N, white: H)

TS7	Н ₃ ВНNH ₂	3.7995	
TS8	$Mg \xrightarrow{H_2} N \xrightarrow{N_2} BH_2 \xrightarrow{N_2} H_2$	4.00	
TS9	H ₃ B H ₂ NMgBH ₂ NH ₂	4.0275	

