Journal Name

ARTICLE

A theoretical modeling of the $L_{2,3}$ -edge X-ray absorption spectra of $Mn(acac)_2$ and $Co(acac)_2$ complexes.

Silvia Carlotto,^{*a} Mauro Sambi,^a Andrea Vittadini^b and Maurizio Casarin^{*a,b}

Figure S1. B3LYP Optimized geometries for I with a square planar (a) and (b), and a distorted tetrahedral (c) arrangement. Bond lengths are in Å and bond angles are in deg.

[[]a] Dr. Silvia Carlotto, Prof. Mauro Sambi, Prof. Maurizio Casarin Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via F. Marzolo 1 - 35131 Padova, Italy E-mail: maurizio.casarin@unipd.it, silvia.carlotto@unipd.it

[[]b] Dr. Andrea Vittadini, Prof. Maurizio Casarin Istituto per l'Energetica e le Interfasi, IENI-CNR via Marzolo 1, 35131 Padova, Italy

0 -1.017 -1.017 1.441	
C 1.766 -1.766 -3.554	
C -1.766 1.766 -3.554	
C = 0.884 - 0.884 - 2.699	
C -0.884 0.884 -2.699	
C 0.000 0.000 -3.337	
C 0.000 0.000 3.337	
C 0.884 0.884 2.699	
C -0.884 -0.884 2.699	
C 1.766 1.766 3.554	
C -1.766 -1.766 3.554	
н 2.405 -1.160 -4.201	
н 1.160 -2.405 -4.201	
н 2.389 -2.389 -2.916	
н -1.160 2.405 -4.201	
н -2.405 1.160 -4.201	
н -2.389 2.389 -2.916	
н 0.000 0.000 -4.420	
н 0.000 0.000 4.420	
н 2.405 1.160 4.201	
н 1.160 2.405 4.201	
н 2.389 2.389 2.916	
н -1.160 -2.405 4.201	
н -2.397 -1.160 4.201	
н -2.389 -2.389 2.916	

Table S2 Optimized Cartesian Coord	inates for	I in the S=5/2	2 (HS) square	planar structure.
Mn	0 000	0 000	0 000	
ГШ О	1 413	1 501	0.000	
Ö	1 /12	_1 501	-0.001	
0	_1 413	-1.501	-0.001	
0	-1.413	1.501	-0.001	
0 C	-1.415	-1.301	0.001	
C	1.244	2.762	0.001	
C	1.244	-2.762	-0.001	
C	-1.244	2.762	-0.001	
C	-1.244	-2.762	0.001	
С	0.000	3.409	0.000	
С	0.000	-3.409	0.000	
C	2.496	3.610	0.002	
C	2.496	-3.610	-0.002	
C	-2.496	3.610	-0.002	
С	-2.496	-3.610	0.002	
Н	0.000	4.491	0.000	
Н	0.000	-4.491	0.000	
Н	3.375	2.969	0.002	
Н	3.375	-2.969	-0.002	
Н	-3.375	2.969	-0.002	
Н	-3.375	-2.969	0.002	
Н	2.520	4.257	0.882	
Н	2.521	4.257	-0.878	
Н	-2.521	4.257	0.878	
Н	-2.520	4.257	-0.882	
H	2.521	-4.257	0.878	
H	2.520	-4.257	-0.882	
 Н	-2.520	-4.257	0.882	
	-2 521	-1 257	_0 878	

Table S3 Optimized Cartesian Coordinates for I in the S=3/2 square planar structure.

Mn	0.000	0.000	0.001
0	1.357	1.334	0.001
0	1.357	-1.334	0.000
0	-1.357	1.334	0.000
0	-1.357	-1.334	0.001
С	1.229	2.609	0.001
С	1.229	-2.609	0.000
С	-1.229	2.609	0.000
С	-1.229	-2.609	0.001
С	0.000	3.271	0.000
С	0.000	-3.271	0.000
С	2.512	3.402	0.001
С	2.512	-3.402	-0.001
С	-2.512	3.402	-0.001
С	-2.512	-3.402	0.001
Н	0.000	4.353	0.000
Н	0.000	-4.353	0.000
Н	3.364	2.725	0.001
Н	3.364	-2.725	-0.001
Н	-3.364	2.725	-0.001
Н	-3.364	-2.725	0.001
Н	2.568	4.047	0.881
Н	2.568	4.047	-0.879
Н	-2.568	4.047	0.879
Н	-2.567	4.047	-0.881
Н	2.568	-4.047	0.879
Н	2.567	-4.047	-0.881
Н	-2.567	-4.047	0.881
Н	-2.568	-4.047	-0.879

Table S4 Optimized Cartesian Coordinates for II in the S=3/2 (HS) tetrahedral distorted structure. Со 0.000 0.000 0.000 0 1.023 -1.023 -1.308 -1.023 1.023 -1.308 Ο 1.308 0 1.023 1.023

-1.023

-1.762

1.762

-0.885

0.885

0.000

0.000

0.885

-0.885

1.762

-1.762

-1.153

-2.397

-2.389

2.397

1.153

2.389

0.000

0.000

1.153

2.397

2.389

-2.397

-1.153

-2.389

1.308

-3.429

-3.429

-2.568

-2.568

-3.200

3.200

2.568

2.568

3.429

3.429

-4.076

-4.076 -2.798

-4.076

-4.076

-2.798

-4.282

4.282

4.076

4.076

2.798

4.076

4.076

2.798

-1.023

1.762

-1.762

0.885

-0.885

0.000

0.000

0.885

-0.885

-1.762

1.762

2.397

1.153

2.389

-1.153 -2.397

-2.389

0.000

0.000

2.397

1.153

2.389

-1.153

-2.397

-2.389

0

С

С

С

С

С

С

С

С

С

С

Η

Η

Η

Η

Η

Η

H H

Η

H H

Η

Η

Η

Table S5. Energy (eV) , d-composition and MOs for I. Symmetry in parenthesis.					
		Energy (eV)	d-composition	MOs	
HOMO (e)	-5.6375	25.4% d _{xz}			
		25.4% d _{yz}			
	HOMO-1	-6.4649	3.7% d _{yz} + 3.6% d _{xz}		
	(e)		3.7% d _{xz} + 3.6% d _{yz}		
	HOMO-2 (a ₁)	-6.9718	58.2% d _{z2}		
	HOMO-3 (b ₂)	-7.5026	76.9% d _{xy}		
	HOMO-4 (b ₁)	-7.7019	81.6% d _{x2-y2}		

HOMO-5 (a ₁)	-8.1900	11 % d _{xy}	
HOMO-6 (e)	-8 3462	21.7% d _{yz} + 20.6% d _{xz}	
		21.7% d _{xz} + 20.6% d _{yz}	
HOMO-7 (a ₁)	-9.0594	37.8% d _{z2}	

Fable S6 Energy (eV) d-composition and MOs for II. Symmetry in parenthesis					
Table 50. Eller			d composition		
HOMO (e)	-6.1025	11.3% d _{yz} + 0.6% d _{xz}	With states		
		11.3% d _{xz} + 0.6% d _{yz}			
	HOMO-1	6 7217	9% d _{yz} + 2.2% d _{xz}		
	(e)	-6.7317	9% d _{xz} + 2.2% d _{yz}		
	HOMO-2 (a ₁)	-7.4872	50.1% d _{z2}		
	HOMO-3 (a ₁)	-8.1070	10.2% d _{xy}		
	HOMO-4 (b ₁)	-8.1655	73% d _{x2-y2}		

HOMO-5 (b ₂)	-9.0431	61.3% d _{xy}	
HOMO-6 (e) -9.2354		25.7% d _{yz} + 19.4% d _{xz}	
	25.7% d _{xz} + 19.4% d _{yz}		
HOMO-7 (a ₁)	-9.3752	45% d ₂₂	

Journal Name

RSCPublishing

ARTICLE