Electronic supplementary information (ESI)

Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytes

Hugh D. Burrows, Telma Costa, M. Luisa Ramos, Artur J.M. Valente, Beverly Stewart, Licinia L. G. Justino, Aline I. A. Almeida, Nathanny Lessa Catarina, Ricardo Mallavia and Matti Knaapila

Centro de Química, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Instituto de Biología Molecular y Celular, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain, and Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

Fig. S1. ¹³C NMR spectrum of the batch of the conjugated polyelectrolyte HTMA-PFP used in this study.

Fig. S2. Expansion 6.5-10 ppm of the ¹H NMR spectra (500 MHz) of D_2O solutions of (i) Al³⁺/8-HQS 2.5:7.5 mmol dm⁻³, pH 5.7 (ii) Al³⁺/8-HQS/CTAB 2.5:7.5:0.50 mmol dm⁻³, (iii) Al³⁺/8-HQS/CTAB 2.5:7.5:1.0 mmol dm⁻³, (iv) Al³⁺/8-HQS/CTAB 2.5:7.5:5 mmol dm⁻³ and (v) Al³⁺/8-HQS/CTAB 2.5:7.5:10 mmol dm⁻³, temp. 298 K.

Fig. S3. Expansion 0-4 ppm of the ¹H NMR spectra (500 MHz) of D₂O solutions of (i) CTAB 5 mmol dm⁻³, (ii) Al³⁺/8-HQS/CTAB 2.5:7.5:0.5 mmol dm⁻³, (iii) Al³⁺/8-HQS/CTAB 2.5:7.5:1 mmol dm⁻³, (iv) Al³⁺/8-HQS/CTAB 2.5:7.5:5 mmol dm⁻³ and (v) Al³⁺/8-HQS/CTAB 2.5:7.5:10 mmol dm⁻³, temp. 298 K.

Fig. S4. Effect of DTAB on the (a) absorption and (b) PL (λ_{exc} =367 nm) spectra of Zn(II):8-HQS (1:2), at pH 6.

Fig. S5. Expansion of the 6.5-10 ppm region of the ¹H NMR spectra of D₂O solutions of (i) $Zn^{2+}/8$ -HQS 5:10 mmol dm⁻³, pH 6.1 (ii) $Zn^{2+}/8$ -HQS/DTAB 5:10:5.0 mmol dm⁻³, (iii) $Zn^{2+}/8$ -HQS/DTAB $Zn^{2+}/8$ -HQS/DTAB 5:10:20 mmol dm⁻³, temp. 298 K.

Fig. S6. Expansion 100-170 ppm of the ¹³C NMR spectra of D_2O solutions of (i) $Zn^{2+}/8$ -HQS 5:10 mmol dm⁻³, pH 6.1 (ii) $Zn^{2+}/8$ -HQS/DTAB 5:10:5.0 mmol dm⁻³, (iii) $Zn^{2+}/8$ -HQS/DTAB.

Fig. S7. Absorption and PL (λ_{exc} = 380 nm) spectra of HTMA-PFP in C₁₂E₅ (1×10⁻⁴ M) micellar solution.

Fig. S8. (a) and (b)A(3) left and A(4) right showing the competing interaction between HTMA-PFP(monomer) and 8-HQS which reduces the frequency of 8-HQS interactions with Zn(II).

Fig. S9. Left and right images show the dissociation of $[Zn(8-QS)_2]^{2-}$ in the presence of HTMA-PFP(trimer;) the right schematic shows the same representation with 8-QS ligand shown in yellow to demonstrate encapsulation by HTMA-PFP(trimer).

Bond lengths	[Al(8-HQS) ₃] ³⁻ + counterions	[Al(8-HQS) ₃] ³⁻	Angles	[Al(8-HQS) ₃] ³⁻ + counterions	[Al(8-HQS) ₃] ³⁻
Al-O _I	1.878	1.885	O _I -Al-N _I	80.84	80.75
Al-O _{II}	1.870	1.870	O _{II} -Al-N _{II}	83.04	83.74
Al-O _{III}	1.884	1.887	O_{III} -Al- N_{III}	82.56	83.55
$Al-N_I$	2.109	2.111	O _I -Al-O _{II}	93.46	92.70
$Al-N_{II}$	2.078	2.073	N _I -Al-O _{III}	89.09	89.95
Al-N _{III}	2.063	2.046	N _{II} -Al-N _{III}	171.70	173.67

Table S1. Selected bond lengths (Å) and angles (degrees) calculated at the B3LYP/6-31G(d,p) level with PCM (water)^a for the meridional $[Al(8-HQS)_3]^{3-}$ complex in the presence or absence N,N,N-trimethyl-N-propylammonium counterions.

^a Polarizable Continuum Model.^{55,56}

Table S2. Mulliken charges for selected atoms calculated at the B3LYP/6-31G(d,p) level with PCM (water)^a for the meridional $[Al(8-HQS)_3]^{3-}$ complex in the presence or absence of N,N,N-trimethyl-N-propylammonium counterions.

Atom	Mulliken Charge [Al(8-HQS) ₃] ³⁻ + counterions	Mulliken Charge [Al(8-HQS) ₃] ³⁻
Al	0.962	0.957
O_{I}	-0.677	-0.678
O _{II}	-0.674	-0.676
O _{III}	-0.681	-0.685
N _I	-0.578	-0.577
N _{II}	-0.562	-0.560
N _{III}	-0.560	-0.557
S_I	1.18	1.11
\mathbf{S}_{II}	1.15	1.12
S _{III}	1.17	1.11

^a Polarizable Continuum Model. ^{55,56}

Dihedral angle	[Al(8-HQS) ₃] ³⁻ + counterions /PCM	[Al(8-HQS) ₃] ³⁻ + counterions /vacuo
N-C4-C5-C6	179.982	178.981
	177.179	179.784
	179.878	179.889
C1-N-C4-C5	177.954	174.961
	178.709	176.393
	177.700	175.632
C2-N-C3-C1	118.555	118.555
	118.635	118.635
	118.481	118.481

Table S3. Dihedral angles (degrees) in the N,N,N-trimethyl-N-propylammoniumcounterions in the B3LYP/6-31G(d,p) optimized geometries.