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Part 1.  The α-ω crystallographic orientation relationships in literatures  
Table SI The orientation relations (OR) for α-ω phase transition in literatures (not limited to Zr). 

 Conditions Variant-I OR Variant-II OR 
J. M. Silcock[1] 
(Silcock) 1958 

TiV, TiMo and TiCr alloys; 
XRD 
 

 (0001)α||(112ത0)ω; 
[1 2ത 0]α||[0001]ω (Silcock 
OR = UZ Variant-II OR) 

M. P. Usikov and 
V. A. Zilbershtei1 
(UZ) 1973 

Zr, Ti under static pressure (10 
GPa)； Theory and TEM 

(0001)α//(011ത1)ω; 
[112ത0]α//[101ത1]ω 
(observed in 
experiment) 

(0001)α//(112ത0)ω; 
[112ത0]α//[0001]ω 
(not observed in 
experiment) 

 
A. Rabinkin, M. 
Talianker and O. 
Botstein 2(RTB) 
1980 

 
Zr under static pressure (6 
GPa); 
high resolution dark-field 
electron microscopy and 
selected area diffraction(SAD) 

 
 

(0001)α//(12ത10)ω; 
[2ത110]α//[0001]ω variant1 
(0001)α//(12ത10)ω; 
[1ത1ത20]α//[0001]ω variant2 
(0001)α//(12ത10)ω; 
[1ത21ത0]α//[0001]ω variant3 
(RTB OR=UZ Variant-II 
OR) 

Kutsar et al 31990 Shock samples Zr (8-32 GPa) 
Reverse ω→α; XRD, TEM 

  (0001)α//(112ത0)ω; 
[1ത1ത20]α//[0001]ω 

S. Song and G. T. 
Gray4  (SG) 1995 

Zr shock-loaded (7 GPa);  
SAD,TEM 

(0001)α//(101ത1)ω; 
[101ത0]α//[112ത3ത]ω  
(SG = UZ 
Variant-I OR) 

 

G. Jyoti, K.D. 
Joshi , Satish C. 
Gupta,Sikka SK 
19975 

Shock-loaded Zr (11.8GPa) 
SAD,TEM 

UZ ORI, also SG  

D. R. Trinkle, R.G. 
Hennig and 
J.W.Wilkins 6 2003 

Ti 
Theory 

(0001)α//(01ത11)ω; 
[112ത0]α// [011ത1]ω 
(TAO-1= UZ 
Variant-I OR) 

 

G.T. Gray7 2005 Highest purity Zr under static 
pressure (7.1-8 GPa); 
SEM, TEM 

(0001)α//(1ത101)ω; 
[1ത010]α//[2ത113ത]ω 

 

Jyoti G 20088  Shock compressed Zr (11.6 Confirm UZ  
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GPa) 
TEM, XRD, SAD 

Variant-I OR 

Wenk Kaercher 9 
2013 

Zr D-DIA and DAC at 1.5-4.5 
GPa; in situ synchrotron x-ray 
diffraction;  

 (0001)α//(112ത0)ω; 
[112ത0]α//[0001]ω; highly 
reversible 

Zong , Lookman10 
2014 

Anisotropic shock response of 
Ti using molecular dynamics 
(Theory) 

Shock along 
[0001]α 
(0001)α//(101ത0)ω; 
[101ത0]α//[112ത3]ω 
 

Shock along [101ത0]α and 
[12ത10]α 
(0001)α//(112ത0)ω; 
[112ത0]α//[0001]ω 

Zong , Lookman11 
2014 

Zr Ti 15-20 μm, shock at 8 
GPa recovered samples ω→α 
XRD 

 (0001)α//(112ത0)ω; 
[112ത0]α//[0001]ω 
Reversibility, 
Heterogeneous nucleation 
observed 

 
Part 2  Theoretical methods 
a. Stochastic Surface Walking (SSW) pathway sampling 

The SSW methodology has been described in our previous work in detail12, 13. We have shown that the 
SSW method is able to explore the potential energy surface (PES) to identify unexpected new structures, 
including clusters and crystals, and at the mean time to collect the reaction pathways leading to them. This is 
attributed to the fact that SSW PES searching involves generally small displacement on lattice and atoms, 
and thus the pathway information is maintained from one minimum to another.  

The purpose of SSW crystal pathway sampling is to establish a one-to-one correspondence for lattice 
(L(e1,e2,e3), ei being the lattice vector) and atom (qi, i=1,..3N, N is the number of atom in cell) from one 
phase to another. The lattice here does not necessarily be the conventional Bravais lattice but any possible set 
of lattice that describe the same crystal phase. Using such a pair of coordinates, QIS(L,q) and QFS(L,q) (IS 
and FS are the initial and the final states), it is then possible to utilize double-ended transition state searching 
method to identify the reaction pathway and the transition state. The current approach is different from the 
traditional Landau-type theory where the lattice correspondence needs to be assumed. The procedure is 
described below briefly. 

 
Pathway collection In SSW pathway sampling, firstly, we start from one single phase (starting phase), 

and utilize the SSW method to explore all the likely phases nearby the phase. A structure selection module is 
utilized to decide whether to accept/refuse once a new minimum is reached. If the new phase different from 
the starting phase is identified by the SSW crystal method14, we record/output the IS (i.e. starting phase) and 
the FS (a new phase) of the current SSW step. Then, the program will return back to the IS by rejecting the 
new minimum to continue the phase exploration; On the other hand, if the new minimum identified by SSW 
is still the starting phase (e.g. the same symmetry but a permutation isomer with varied lattice), the program 
will accept the new isomeric phase and start the phase exploration from this phase. We repeat this procedure 
until a certain number of IS/FS pairs are reached.  

 
 Pathway screening Secondly, we utilize the variable-cell double-ended surface walking (DESW) 

method15 to establish the pseudopathway connecting IS to FS for all IS/FS pairs 16, 17. The approximate 
barrier is obtained according to DESW pseudopathway, where the maximum energy point along the pathway 
is generally a good estimate for the true TS 15. By sorting the approximate barrier height, we can obtain the 
candidates for lowest energy pathways. 

It might be mentioned that at this stage, we generally examined thoroughly all the pathways we identified. 
Basically, even before we locate exactly the TS, we can have the following important information, including 
the approximate barrier, the pattern of lattice and atom movement from IS to FS, the atomic habit plane and 
the OR for the pathways, From these, we can safely rule out the similar pathways and focus on the selected, 
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distinct and low energy pathways. 
 
 Lowest energy pathway determination Thirdly, the candidate lowest energy pathways are selected to 

locate exactly the “true” TS by using DESW TS-search method15. By sorting the exact barrier calculated, the 
energy difference between the TS and the IS, the lowest energy pathways can be finally obtained. All the 
lowest energy pathways will be further confirmed by extrapolating TS towards IS and FS, and the TSs are 
validated by phonon spectrum calculation, showing one and only one imaginary mode.  

 
For α-ω phase transition in this work, starting either from α or ω phase, the DFT-based SSW pathway 

sampling in the 6-atom cell simulation visits 5777 minima nearby IS (see PES shown in Figure 2a) and 
collects 233 IS/FS pairs (see Figure S1 below); in the 12-atom cell simulation, visits 2193 minima and 
collects 33 IS/FS pairs. All the calculations were performed under 3 GPa hydrostatic pressure. 
  Figure S1 plots the structure of high-symmetry Zr crystal phases obtained from SSW sampling. We can 
identify all the common phases, including the simple hexagonal phase (ω, the global minimum at 3 GPa), the 
α phase, the body-center cubic (bcc, no. 229), and also other possible phases, such as face-center cubic (fcc, 
no.225) and a cubic phase (no.139). These phases can be distinguished by their symmetry, the volume and 
the coordination of Zr. In this work, the coordination is defined as Eq. S1 below 

0

0
0

1 1( )0

1
1 ij

N N
d di j i j

CC N e   
           (S1) 

where N0 is the number of Zr atoms in the primitive cell and N is the number of Zr atoms in the supercell 
((3x3x3) of the primitive cell), i and j are the label of atom; dij is the distance between the i atom and j atom; 
d0 is a constant being 3.24 (Å); C0 is a scaling constant being 1.33 to yield ~12-coordination for Zr in α 
phase.  
 

Figure S1 plots the approximate barrier from DESW peudopathways against the scaled Euclidean distance 
of the pathway for α-ω phase transitions. It includes the results from both 6-atom and 12-atom sampling. In 
the 6-atom sampling, 51 of 233 pathways have the approximate barrier below 90 meV/atom with respect to α 
phase. Among them, 13 lowest energy pathways in the bottom left corner were selected for the exact TS 
location. This leads to the finding of the lowest energy pathways, P-I to P-IV (see Figure 1b and also Figure 
S1). In the 12-atom sampling, 16 of 37 pathways have the approximate barrier below 90 meV/atom with 
respect to α phase. Among them, 12 lowest energy pathways in the bottom left corner were selected for the 
exact TS location. This leads to the finding of the same lowest energy pathways, P-I and P-II. 

 
Figure S1. Pathway screening by plotting the approximate energy barrier (eV/6-atom with respect to α phase) 
versus the scaled Euclidean distance (Å) between two phases (measured from the pathways) under 3 GPa. In 
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total, there are 233 pathways from 6-atom sampling and 37 pathways from 12-atom sampling. The 
approximate barrier is obtained according to DESW pseudopathway, where the maximum energy point along 
the pathway is generally a good estimate for the true TS 15. Only the lowest energy pathways, P-I to P-III 
are highlighted. 
 
 

 
 
Figure S2 Potential energy profile for five lowest energy pathways for α-ω solid phase transition, P-I to P-V 
(P-I to P-III are also discussed in the text). 
 
b. DFT calculation details 
 All calculations were perfomed using the plane wave DFT program, Vienna ab initio simulation package 
VASP 18, 19 where Zr electron-ion interaction was represented by the projector augmented wave (PAW)20 and 
the exchange-correlation functional utilized was GGA-PBE21. In the pathway sampling, we adopt the 
following setups to speed up the PES exploration: plane-wave cutoff 400 eV; the Monkhorst-Pack k-point 
mesh of (6×6×6) set for 6-atom supercell and (4×4×4) set for 12-atom supercell; 4-electron (4d5s5p) PAW 
pesudopotential for Zr. To obtain accurate energetics for the pathways, a more accurate calculation setup was 
utilized: the plane-wave cutoff 600 eV; the k-point mesh up to (10×10×10) set and 12-electron (4s4p4d5s5p) 
PAW pesudopotential for Zr. For all the structures, both lattice and atomic positions were fully optimized 
until the maximal stress component is below 0.1 GPa and the maximal force component below 0.001 eV/Å, 
which leads to the convergence of the relative energy (e.g. barrier) below 2 meV/atom. The convergence of 
the energetics with respect to k-point mesh is shown in Table SII.  
 
TABLE SII The convergence of energetics (meV/atom) for the key states (6-atom cell, see Part 6 
for structures) in P-II with respect to different k-point mesh. The energy of α-phase is set as zero 
reference. The TS has been re-optimized under each k-point set. 
 
k-point mesh 6×4×6 8×6×8 8×8×8 10×8×10 
α phase 0 0 0 0 
TS2 51.58 53.67 53.27 51.62 
ω phase -2.31 -4.84 -4.94 -4.71 
 
c. Phonon and elastic properties 

The phonon frequencies of the crystals were determined using the finite displacement method22, 23, 
employing the PHONOPY package 24. In these calculations, the size of the system was increased to (2×2×2) 
supercell (48-atom supercell) and the K-point utilized is (2×2×2) Monkhorst-Pack mesh. With a 
displacement of ±0.01 Å on nonequivalent atoms, a set of displaced supercells was generated and the forces 
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of these supercells were calculated using plane-wave DFT package, VASP program. These forces were 
carried back to the PHONOPY to calculate the phonon dispersion curves. The TS phonon spectra are shown 
in Figure S4, confirming one and only one negative phonon mode in the Brillion zone for the TS obtained in 
this work. 

The elastic tensor is determined by performing six finite distortions of the lattice and deriving the elastic 
constants from the strain-stress relationship25. The linear elastic constants Cij from a 6×6 symmetric matrix, 
have 27 different components, fulfilling ߪ௜ = ∁௜௝ߝ௝ for small stresses σ and strains ε values26. Properties 
such as the bulk modulus, shear modulus can be computed from Cij. 
  Specifically, the bulk modulus (B) and shear modulus (G) can be estimated from the individual elastic 
constants Cij by the Voigt approximation and the Reuss approximation27, 28. The expressions for the Voigt and 
Reuss approaches are represented in Eqs. (S2-3) for bulk and shear modulus: 

Bv  1
9 (C11 C22 C33) 2

9 (C12 C23 C13)                      （S2） 

11 22 33 12 23 13 44 55 66
1 1 1( ) ( ) ( )15 15 5vG C C C C C C C C C          （S3） 

 
 
Part 3.  Pressure dependence of homogeneous phase transition pathways (P-I and P-II) 
 
   To understand the pressure dependence of the α-ω solid phase transition, we have also calculated the 
enthalpy barrier of the lowest energy homogeneous phase transition pathways, P-I and P-II, under different 
pressure conditions. The results are shown in Figure S3. We found that the barrier of P-I changes slightly 
with the change of the pressure, while the barrier of P-II decreases quite rapidly with the increase of the 
pressure. Nevertheless, the barrier of P-II is always higher than that of P-I at the interested pressure regions, 
even at the high pressures, e.g. 12 GPa. This indicates that P-I is always the preferred homogeneous phase 
transition channels that could be responsible for the initial nucleation events. Therefore, the observation on 
two different ORs in experiment cannot be attributed to the homogeneous phase transition mechanism alone. 
In the main text, we have shown in Figure 3 that it is the heterogeneous phase propagation pathways that are 
responsible for the pressure dependence of α-ω solid phase transition observed in experiment. 
 
 

 
Figure S3. DFT enthalpy barrier with respect to α phase as a function of hydrostatic pressure for the 
homogeneous transition pathways P-I and P-II.  
 
 
Part 4. Numerical search to determine the OR and search for atomic habit planes (coherent interface) 
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Figure S4. Snapshots for α-ω transformation in the homogeneous phase transition pathways, P-I and P-II. 
In the top panel are the views from [0001]ω direction. Yellow lines are the atomic habit plane edge. The blue 
atoms highlights the atom row with zero displacement at [0001]ω during the phase transition. Those in the 
bottom panel highlight the atom displacement viewed down from the determined atomic habit plane, (112ത2)α 
(P-I) and (101ത0)α (P-II). The distances labeled are in Å. Cyan and Grey: Zr at two different layers. 
 
 

The SSW pathway sampling provides the lowest energy pathway between two connecting phases, which 
determines the lattice and atom correspondence, as illustrated in Figure S4 for α-ω phase transition in P-I 
and P-II. The lattice parameters and atomic coordinates of P-II utilized in the following analysis are 
provided in Part 6. Note that the lattice and atom coordinates identified in the lowest pathways are generally 
not in conventional Bravais lattice of crystal. In the following, we describe in detail the three steps that are 
required to identify the atomic habit plane (coherent interface) between two phases. 

 
Step1: Determine Strain Invariant (minimum) Planes 

Based on the lattice correspondence, we can first use the classical phenomenological theory of Martensitic 
crystallography (PTMC) 29-35 to determine the invariant line strain, the possible habit planes and ORs. 

 
Determine the principal axes of the phase transformation.  
Let define two lattices as T and M, both (3x3) matrix of lattice. 
A deformation gradient F matrix transform an initial lattice T to a final lattice M, as  

FT= RBT=M 
 F=RB 

where R is a rigid-body rotation matrix and B is a lattice deformation matrix, representing the 
generalized Bain deformation. In PTMC, F is also known as a homogeneous invariant line strain. 
The Gauchy-Green deformation tensor is  

C=FTF=(TT)-1 MT MT-1 
C is rotational invariant. 
The principal axes are the eigenvectors (ei, i=1,2,3) of the Gauchy-Green deformation tensor 

Cei= liei 
The strain energy of the lattice deformation is defined the sum of three eigenvalues, li  

I=tr(FTF)= l1+ l2+l3 
 

Taking P-II in α-ω phase transition as the example (which is simpler because its Martensitic 
mechanism), three principal axes (Cartesian coordinate) are as follows using α-phase as initial 
phase and ω-phase as final phase: 
 
e1:   (0.0084  0.6913  -0.7225)α;    l1= 0.83077 
e2:   (1.0000  -0.0049  0.0070)α;    l2= 0.95218 

α α ω TS1 TS2 

[1૚ഥ00] 

[10૚ഥ0] 

[0001] [11૛ഥ0] 

[1૚ഥ00] 

P-I P-II 
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e3:   (-0.0013  0.7226  0.6913)α;    l3= 1.23703 
 

Obviously, e2 direction is the principal axes with the lowest strain. 
 
Determine the strain invariant lines (SIL) and strain invariant planes (SIP) 
 
For Martensitic phase transition, three eigenvalues of matrix C could not be all larger than one or all 
smaller than 1 and in general l2 should be close to unity for generating SIP (otherwise only strain 
minimum planes can be obtained):,  

l1 < 1; l2 > 1; l3 > 1;  or  l1 < 1; l2 < 1; l3 > 1  (l3> l2> l1) 
 
Using three eigenvectors e as the basis, we need to determine the strain invariant lines on a corn 
surrounding the maximum or the smallest ei. This is equivalent to find the fractional coordinate (a,b,c) in 
the following two equations. 

a2+b2+c2=1 
a2 l1 +b2 l2+c2 l3=1 

While there are in principle infinite number of solutions for (a,b,c), the problem can be simplified by 
identifying the strain invariant lines on the plane defined by the largest and the smallest eigenvectors, e1 
and e3., i.e. by setting 

b=0 
These strain invariant lines can thus be solved as 

sil1=ae1 + ce3 and sil2 =ae1 – ce3 
     

In P-II of α-ω phase transition, two solutions of sil (Cartesian coordinate) vector on the plane with 
e1×e3 normal are yielded: 
sil1:   (0.0056  0.9944  -0.1057)α    
sil2:   (-0.0073  -0.0617  0.9981)α 
 
Similarly, the SILs on the plane defined by e2 and e3 can be found (in these cases, a nonzero strain 
on the principal axis e1 will be considered in the following step to generate strain minimum 
planes): 
sil3:   (0.9116  0.2916   0.2896)α    
sil4:   (-0.9127  0.3005  0.2768)α 

 
Using a sil vector and another untilted line, e.g. the principal axes e normal to sil, it is possible to 
construct the so-called strain invariant (minimum) plane, the habit plane. All lines on habit plane are 
unrotated, which should contain a strain invariant line and also an untilted line. These lines and their 
angle are unchanged under the rigid-body rotation and the lattice deformation. The habit plane normal 
sip, a unit vector, can be solved using 

sipk = sili × ej 
F sipk =RB sipk = sipk    

 
In P-II of α-ω phase transition, two solutions of sipi, i=1, 2 with the minimum strain are yielded. In 
the convention of Miller plane, sip are named using (hkl) with real numbers: 
  
sip1:   (0.0332  -0.8978  -3.0609) α     sip1 = sil1 × e1 
sip2:   (0.0227  8.4727  -0.4164) α      sip2 = sil2 × e1 
 

The second lowest strain planes based on e2 can be similarly derived: 
sip3:   (-2.1084  5.6087  1.5698) α     sip3 = sil3 × e2 
sip4:   (-2.0960  -5.582  -1.5885) α     sip4 = sil4 × e2 

 
 

Step 2: Determine the crystal planes with minimum strain and minimum atomic movement 
 
   Now we need to go beyond PTMC by considering the atomic movement in the phase transition. 

The possible sipi only takes into account the lattice strain between two connecting phases but the atomic 
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match at the interface cannot be quantitatively measured. For diffusionless Martensitic phase transition, it is 
important that the atoms at the phase junction are closely matched and thus the atomic displacement needs to 
be as small as possible from one phase to another.  

Based on the atom correspondence from the pathway obtained from SSW, we can search for the crystal 
plane with minimum strain and minimum atomic movement.  

a. The minimum strain condition is first utilized to screen the possible crystal Miller planes by 
minimizing the dihedral angle between the crystal plane ((hkl) with integer number) and the sipi..  

b. The atomic movement can be calculated by summing the displacement of each atom from initial 
to the final phase while projecting out those due to rigid-body rotation.  

The atomic movement is composed of two types of movement, parallel to the crystal plane (hkl) and 
perpendicular to the plane, d┴. For Martensitic phase transition, the phase transition is achieved often via 
slipping or twinning and thus the atomic movement needs to be dominated by those parallel to the habit 
plane.  
 

In P-II of α-ω phase transition, if limiting the search within low index planes (hkl) with the absolute 
value of h, k, l being 0 or 1. Two solutions corresponding to sipi, i=1, 2 are yielded: 

 
SOLUTION 1: (001)α plane, which is 9.08 degrees (angle) off sip1. The atomic movement is 
1.80 Å parallel to the plane and 2.80 Å perpendicular to the plane (d┴). 

 
SOLUTION 2: (010)α plane, which is 7.48 degrees off sip2. The atomic movement is 2.94 Å 
parallel to the plane and 1.36 Å perpendicular to the plane. 
 

The SOLUTION 2, (010)α, has the smallest d┴ (1.36 Å). By switching to the notation in conventional 
Bravais lattice, (010)α is (11ത00)α 
     
The solutions for the second lowest strain planes are as follows: 
 

 SOLUTION 3: (1ത11)α plane, which is 24.84 degrees off sip3. The atomic movement is 2.66 Å 
parallel to the plane and 2.04 Å perpendicular to the plane. 
 
SOLUTION 4: (111)α plane, which is 24.56 degrees off sip4. The atomic movement is 2.66 Å 
parallel to the plane and 2.04 Å perpendicular to the plane. 
 

We note that (1ത11)α and (111)α are the same plane for α phase in the lattice of P-II. By switching to the 
notation in conventional Bravais lattice, (111)α is (1૚ഥ01)α 
 

 
Step 3: Identify the atomic habit plane (interface) 

Finally, we utilize the determined possible atomic habit planes to establish the interface between two 
phases (see Figure S4). An atomic habit plane needs to exhibit a coherent interface between two phases, i.e. 
with the lowest interfacial energy.  
 

 For P-II in α-ω phase transition, we have two likely interfaces as suggested from Step 2: (101ത0)α 
//(11ത00)ω and (11ത01)α//(011ത1)ω. (101ത0)α//(101ത0)ω has both minimum strain and minimum d┴. By 
manually joining the two surfaces of the two phase together, we found that (101ത0)α//(11ത00)ω pair can 
form a coherent interface between the two phases. The DFT optimized interface is shown in the Figure 
S5 (d) with a low interfacial energy, 4 meV/Å2. We therefore conclude that (101ത0)α//(11ത00)ω is the 
atomic habit plane and the OR can be written as (101ത0)α//(11ത00)ω; [0001]α//[112ത0]ω, which is equivalent 
to UZ Variant-II OR in literature. 

 
 

Using the same approach, the OR and atomic planes (HP) for P-I could also be established. The e, I and 
sil and sip as defined in Part 4 are listed in Table SIII below. Unlike that in P-II, we found that sip1 and sip2 
have minimum strain but with large d┴, but sip3 and sip4 has a larger strain but with small d┴. In particular, 
sip4 has a diminished d┴. By constructing these interfaces involving sip4 and sip2 in the superlattice, namely, 
(112ത2)α//(11ത00)ω and (1ത21ത1)α//(11ത00)ω, we found that (112ത2)α//(11ത00)ω from sip4 can achieve a stable 
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interface, while the (1ത21ത1)α//(11ത00)ω from sip2 is not stable, the optimization of which leads to pure phase. 
The structure of these interfaces are shown in Figure S5. The atomic habit plane is therefore determined as 
(112ത2)α//(11ത00)ω with OR as (112ത2)α//(11ത00)ω; [11ത00]α//[112ത0]ω, which is equivalent to UZ Variant-I OR in 
literature. 

 
 
 
 
 
Table SIII. The OR and atomic habit planes (HP) for P-I (the structures are listed in Part 7). The e, I, sil 
and sip are as defined in Part 4. 
 
P-I  Note 
e1 
e2 
e3 

(0.4200 -0.3419 -0.8407) 
(0.8878 0.3471 0.3024) 
(0.1884 -0.8733 0.4492) 

 
 
 

I1 
I2 
I3 

0.80745 
0.97747 
1.23083 

 
 
 

sil1 
sil2 
sil3 
sil4 

(0.4371  -0.8414  -0.3178) 
(-0.183  -0.3365  0.9237) 
(0.9036  0.0708  0.4226) 
(-0.7912  -0.5917  -0.1546) 

(on the plane defined by) e1×e3  
e1×e3 
e2×e3 
e2×e3 

 
sip1 
sip2 
sip3 
sip4 

 
(-0.8684  -1.6743  5.4062) 
(-2.5451  5.3912  -1.6406) 
(0.5117  4.4018  -4.4553) 
(2.6790  -4.7318  4.6542) 

*(hkl)   angle  d┴   
(001)  26.0o    2.3325 
(11ത0)  28.73o  2.3230 
(01ത1)  5.22o   1.5259 
(11ത1)  19.91o   0.0059 

Two likely interfaces (11૛ഥ2)α//(1૚ഥ00)ω; (sip4) 
(1ത21ത0)α//(11ത00)ω (sip2) 

(a) and (b) in Figure S5 

Atomic HP (112ത2)α//(11ത00)ω  
OR (112ത2)α//(11ത00)ω; [11ത00]α//[112ത0]ω  
*(hkl) is with respect to the lattice from the P-I pathway, not the conventional Bravais lattice. 
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Part 5.  Heterophase junctions in superlattice (HJ-I to HJ-VI in Table 1) 

 
Figure S5. Six possible α-ω heterophase junctions (HJ) created from P-I (a-c) and P-II (d-f). (a) 
(112ത2)α//(11ത00)ω (the most stable interface of P-I, HJ-I, also see Figure 2c; (b) (1ത21ത1)α//(11ത00)ω; (c) 
(0001)α//(011ത1)ω(interface suggested from the first condition of Tao-1 OR); (d) (101ത0)α//(11ത00)ω (the most 
stable HJ of P-II, HJ-II, also see Figure 2c; (e) (11ത01)α//(011ത1)ω (f) (0001)α//(112ത0)ω( interface suggested 
from the first condition of Silcock OR, HJ-III in Figure 2c) at hydrostatic pressure of 3 GPa. From our DFT 
calculations using the superlattice approach, the interface (a), (d-f) can be optimized as stable interfaces with 
mixed phases, and the other interfaces are not stable, falling back to pure phases after optimization. The 
calculated interfacial energy is 20 meV/ Å2 for the HJ-I in (a), 4 meV/ Å2 for the HJ-II in (d), 33 meV/Å2 for 
the interface in (e) and 8 meV/Å2 for the HJ-III in (f). The interfacial atoms are yellow colored.  
 
The interfacial energy γint is calculated using Eq. S4. 

γint = [E(biphase) –Σi ni Ei(pure phase)] /2A              (S4) 
where E(biphase) is the total energy of the biphase crystal (superlattice), Ei(pure phase) is the energy of pure phase, 
ni is number of Zr of the different phase components in the biphase and A is the surface area of the interface. 
Obviously, the lower γint is, the more stable the interface will be. In this work, all the interfaces in superlattice 
contain the same number of atoms in α and in ω phase (half-half composition). 
 

(0001)α//(01૚ഥ1)ω 
  

c) 
ω α 

(0001)α //(11૛ഥ0)ω 

f) ω α 

d) 
ω α 

(10૚ഥ0)α//(1૚ഥ00)ω 

a) 
ω α 

(11૛ഥ2)α//(1૚ഥ00)ω 

b) 
ω α 

(૚ഥ2૚ഥ1)α//(1૚ഥ00)ω 

e) 

(1૚ഥ01)α //(01૚ഥ1)ω 

ω α 
ω α 

ω α 

ω α 
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In Table SIV, we listed the calculated elastic constants of pure α, ω phases, and the heterophase junctions, 
HJ-I and HJ-II in superlattice (Figure 2c). In general, our DFT results agree with the experimental values and 
the previous calculations at zero pressure for pure phases. The B/G ratio is related to the brittleness (ductility) 
of material. A large B/G value indicates a high ductility, while a low value reflects the brittleness. It is seen 
from Table SIV that the HJ-I from P-I (OR-I, Figure 2c and Figure S5-a) has a larger B/G value than pure α 
and ω phase, while HJ-II from P-II (OR-II, Figure 2c and Figure S5-d) has a smaller B/G value than pure 
phases. It shows that HJ-II from P-II would be more brittle than pure zirconium. 
 
Table SIV: Bulk modulus (B), shear modulus (G) and B/G ratio for pure α, ω phase and the mixed phase 
junctions of zirconium at 3 GPa. 
  B G B/G 
 
Pure α 

This work (3GPa) 102.6 38.2 2.69 
This work (0GPa) 97.4 34.1 2.85 
Expt. 97.636  9437  95.338 36.138  
Other works (0GPa) 93.439  97.140 99.841  97.542   

 
Pure ω 

This work（3GPa） 104.0 50.5 2.06 
This work（0GPa） 97.6 45.3 2.15 
Expt  90.037 109.037 104.043 45.143  
Other works (0 GPa) 101.139    

HJ-I 
(Fig. 2) 

This work (3GPa) 96.6 28.8 3.35 

HJ-II 
(Fig. 2) 

This work (3GPa) 108.0 53.4 2.02 
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Part 6 The Cartesian atomic coordinates for P-I, P-II, P(HJ-I) and P(HJ-II) 
P-I    
α-phase a=6.0497  b=5.5458  c=5.5456  α=120o  β= 90o  γ=117o 
 X Y Z 
 2.104591 -0.47915 1.909945 
 0.421708 1.771182 3.438113 
 4.28239 1.68907 1.146356 
 1.257478 2.206195 0.381911 
 3.446659 1.253685 4.202805 
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 5.129516 -0.9962 2.674263 
TS1 a=5.913  b=5.7275  c=5.727  α=124o  β= 90o  γ=116o 
 X Y Z 
 2.319818 -0.73684 1.612058 
 0.665882 1.855359 3.286472 
 4.150509 1.736862 1.350145 
 1.216924 1.950416 0.345753 
 3.360321 0.752764 4.186863 
 5.252898 -0.95056 2.615626 
ω-phase a=5.901  b=5.898  c=5.898  α=130o  β= 85o  γ=116 o 
 X Y Z 
 2.398665 -0.8832 1.444625 
 1.102164 1.764549 2.888627 
 4.052608 1.76527 1.444602 
 1.102689 1.765681 -0.00052 
 3.224138 0.440576 4.334394 
 5.348572 -0.88361 2.889734 
P-II    
α-phase a=5.131  b=8.489  c=3.202  α=101o  β= 90o  γ=90o 
 X Y Z 
 8.119898 -0.40799 4.546797 
 0.436148 9.892251 4.882902 
 8.137671 11.72593 0.35479 
 8.135627 13.53628 5.594255 
 0.44223 13.53678 0.692574 
 0.438615 15.34737 5.93141 
TS2 a=5.052  b=8.514  c=3.167  α=95o  β= 90o  γ=90 o 
 X Y Z 
 2.938924 0.539731 1.488119 
 0.413742 2.143765 1.714288 
 2.938901 3.511379 0.128684 
 2.938907 6.116012 2.002049 
 0.41379 5.084719 1.198786 
 0.413914 16.20388 3.073626 
ω-phase a=5.007  b=8.669  c=3.120  α=90o  β= 90o  γ=90o 
 X Y Z 
 7.927614 0.723208 4.679804 
 0.417259 10.83581 4.681728 
 7.92759 12.2811 1.92E-05 
 7.927611 15.17029 4.680914 
 0.417247 13.72662 1.55897 
 0.417267 16.61582 6.240539 
  
P(HJ-I) a= 16.475  b= 6.033  c= 5.531  α= 90.7o  β= 90.2o  γ=83.8o 
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α-phase X Y Z 
 0.596206 5.440224 5.10589 
 0.271105 2.508434 0.447855 
 7.234932 3.474308 3.21249 
 6.923107 0.477126 2.340986 
 5.649523 1.442836 5.105378 
 5.981729 4.508243 0.447226 
 4.707818 5.472753 3.213205 
 4.397375 2.475438 2.34047 
 2.777741 0.441366 5.977867 
 3.143753 3.509414 -0.42453 
 1.869878 4.475319 2.339891 
 1.524264 1.475502 3.212639 
 8.833636 5.440224 5.10589 
 8.508577 2.508434 0.447855 
 15.47236 3.474309 3.21249 
 15.16053 0.477126 2.340987 
 13.88695 1.442837 5.105378 
 14.21916 4.508243 0.447225 
 12.94525 5.472753 3.213205 
 12.6348 2.475438 2.34047 
 11.03636 0.509444 0.447026 
 11.35999 3.441336 5.106309 
 10.10731 4.475319 2.339891 
 9.761693 1.475502 3.212639 
ts1 a= 17.286  b= 6.142  c= 5.106  α= 90.1o  β= 90.0o  γ=90.9o 
 X Y Z 
 -0.07069 5.195743 4.972417 
 -0.02198 2.130447 0.157564 
 7.102177 3.689735 2.69801 
 7.148772 0.619862 2.432735 
 5.729693 1.980345 4.973431 
 5.685505 5.055846 0.156849 
 4.25797 5.2352 2.701828 
 4.304609 2.16464 2.428161 
 2.876578 0.517628 5.133497 
 2.832826 3.593359 -0.0033 
 1.358208 5.016387 2.427177 
 1.404722 1.94618 2.702846 
 8.593499 5.640945 4.885926 
 8.642254 2.57586 0.243893 
 15.85037 3.492133 2.698005 
 15.89735 0.422249 2.4325 
 14.35018 1.527956 4.88755 
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 14.30588 4.603547 0.242974 
 12.88758 5.643269 2.815392 
 12.93516 2.573375 2.314638 
 11.52034 0.516325 0.253651 
 11.4724 3.58175 4.87678 
 10.02003 4.615441 2.315279 
 10.06575 1.544787 2.814879 
HJ-I (int1) a= 17.412  b= 6.165  c= 5.052  α= 90.0o  β= 90.0o  γ=91.9o 
 X Y Z 
 -0.16706 5.148065 4.979498 
 -0.06644 2.067648 0.093026 
 7.082114 3.731736 2.634716 
 7.182697 0.651459 2.438065 
 5.743924 2.06438 4.980431 
 5.643333 5.144336 0.091983 
 4.185471 5.199405 2.604972 
 4.286242 2.118273 2.467232 
 2.890443 0.525514 5.037214 
 2.789523 3.60581 0.034915 
 1.292942 5.093111 2.466788 
 1.393613 2.01239 2.605652 
 8.556604 5.663427 4.85557 
 8.657447 2.582894 0.217529 
 15.91154 3.480148 2.635339 
 16.01257 0.399502 2.437487 
 14.42754 1.537247 4.855817 
 14.32709 4.618039 0.217018 
 12.87962 5.669091 2.764449 
 12.9804 2.588475 2.308339 
 11.59264 0.516747 0.232458 
 11.49199 3.597296 4.840311 
 10.01588 4.631645 2.309625 
 10.11642 1.551017 2.763364 
ts2 a= 17.400  b= 6.171  c= 5.046  α= 90.0o  β= 90.0o  γ=91.8o 
 X Y Z 
 -0.15543 5.163301 4.98104 
 -0.06104 2.079392 0.085442 
 7.10411 3.70264 2.618011 
 7.19844 0.618721 2.448648 
 5.740683 2.05392 4.98425 
 5.646086 5.137847 0.082212 
 4.195485 5.18983 2.592925 
 4.290062 2.105893 2.473472 
 2.889992 0.52507 5.028168 
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 2.795279 3.609112 0.038113 
 1.30209 5.112153 2.47122 
 1.396579 2.028162 2.595215 
 8.55678 5.576777 4.837229 
 8.651476 2.492858 0.229743 
 15.88992 3.513004 2.622489 
 15.98474 0.429052 2.444093 
 14.41095 1.599898 4.834134 
 14.31659 4.684015 0.232526 
 12.88602 5.628995 2.771539 
 12.98042 2.545039 2.294927 
 11.57544 0.522831 0.210403 
 11.48094 3.606733 4.855955 
 10.01523 4.718042 2.297718 
 10.10937 1.634067 2.768957 
int2 a= 17.455  b= 6.223  c= 4.992  α= 90.0o  β= 90.0o  γ=90.2o 
 X Y Z 
 17.40834 5.231606 4.954732 
 17.41846 2.120001 0.05731 
 7.26359 3.652848 2.499564 
 7.273555 0.541276 2.513082 
 5.811574 2.093888 0.004317 
 5.801621 5.205403 0.016236 
 4.356819 5.203297 2.512798 
 4.366812 2.091798 2.499802 
 2.915242 0.526642 0.004289 
 2.905277 3.638161 0.016154 
 1.470849 5.170609 2.470509 
 1.480875 2.059089 2.541748 
 8.68752 5.22249 4.972199 
 8.697542 2.110774 0.040369 
 16.09543 3.591918 2.589427 
 16.10549 0.480425 2.42247 
 14.47016 1.451376 4.824495 
 14.46011 4.562806 0.187544 
 13.15713 5.823247 2.684365 
 13.16706 2.71167 2.327697 
 11.54021 0.568698 0.093417 
 11.53014 3.680283 4.918644 
 10.20815 5.158287 2.463813 
 10.21811 2.046794 2.54851 
ts3 a= 17.413  b= 6.216  c= 5.007  α= 90.0o  β= 90.0o  γ=90.6o 
 X Y Z 
 17.39039 5.245196 4.969817 
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 17.40889 2.134749 0.065631 
 7.247983 3.667958 2.506872 
 7.272801 0.558782 2.527348 
 5.800782 2.095989 0.000927 
 5.778146 5.20529 0.026081 
 4.336782 5.215351 2.528387 
 4.359329 2.105794 2.50336 
 2.917682 0.534716 0.002618 
 2.892658 3.643168 0.023774 
 1.44066 5.171654 2.478552 
 1.462213 2.06244 2.55659 
 8.676365 5.249738 4.981347 
 8.697751 2.14066 0.05252 
 16.00401 3.596987 2.597801 
 16.02785 0.487171 2.438967 
 14.49023 1.661456 4.812158 
 14.47348 4.771319 0.22352 
 13.06037 5.658415 2.726913 
 13.08343 2.548262 2.308874 
 11.57624 0.612507 0.093039 
 11.55443 3.721316 4.942311 
 10.14288 5.183737 2.468094 
 10.16407 2.075118 2.56772 
ω-phase a= 17.253  b= 6.273  c= 5.013  α= 90.0o  β= 90.0o  γ=90.1o 
 X Y Z 
 17.25877 5.242496 5.022379 
 17.25679 2.104703 0.009786 
 7.193374 3.67192 2.516743 
 7.19661 0.534603 2.516118 
 5.752437 2.099662 0.010467 
 5.749321 5.237213 0.010466 
 4.316769 5.242145 2.51594 
 4.319908 2.104664 2.515985 
 2.880755 0.534325 0.010403 
 2.875995 3.670058 0.009885 
 1.438831 5.237569 2.51689 
 1.443693 2.101905 2.516827 
 8.632531 5.242496 5.022379 
 8.630553 2.104701 0.009785 
 15.81963 3.671919 2.516742 
 15.82287 0.534604 2.516118 
 14.38564 2.101892 5.023062 
 14.37557 5.237214 0.010465 
 12.94302 5.242145 2.51594 
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 12.94616 2.104664 2.515985 
 11.50701 0.534326 0.010404 
 11.50921 3.672285 5.022479 
 10.06509 5.23757 2.516889 
 10.06995 2.101904 2.516828 
P(HJ-II)  
α-phase a= 3.204  b= 5.137  c= 16.930  α= 90.0o  β= 100.8o  γ=90.0o 
 X Y Z 
 0.004734 3.852591 0.92439 
 1.60234 1.284222 1.847286 
 0.004613 1.284221 4.619027 
 1.611169 3.852589 3.695501 
 0.013585 3.852589 6.467223 
 1.611165 1.28422 7.390458 
 -1.58364 3.852588 9.238135 
 0.013948 1.284218 10.16191 
 -1.5837 1.284219 12.93352 
 0.022808 3.852588 12.01026 
 -1.57483 3.852587 14.78185 
 0.022666 1.284218 15.70509 
ts4 a= 3.160  b= 5.105  c= 17.385  α= 90.0o  β= 103.4o  γ=90.0o 
 X Y Z 
 -0.26723 3.813623 0.933973 
 1.365899 1.261313 2.032076 
 -0.2374 1.260815 4.827882 
 1.317172 3.813451 3.730309 
 -0.28542 3.812997 6.527409 
 1.346479 1.260749 7.626908 
 -1.87722 3.813776 9.292987 
 -0.22316 1.263229 10.50736 
 -1.89731 1.262214 13.27185 
 -1.21578 3.814559 12.1669 
 -2.88892 3.813547 14.92997 
 -1.23324 1.262915 16.14256 
HJ-II, int3 a= 3.129  b= 5.087  c= 17.713  α= 90.0o  β= 105.4o  γ=90.0o 
 X Y Z 
 -0.37969 3.807248 0.838837 
 1.206964 1.263052 2.069911 
 -0.38969 1.262304 4.887109 
 1.157743 3.806201 3.65027 
 -0.42824 3.806118 6.469006 
 1.14615 1.262434 7.699129 
 -1.98207 3.806149 9.234769 
 -0.40322 1.262803 10.64646 
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 -1.97566 1.263264 13.51695 
 -1.95442 3.806455 12.09727 
 -3.52096 3.807606 14.96936 
 -1.93291 1.261953 16.38112 
ts5 a= 3.147  b= 5.047  c= 17.939  α= 90.0o  β= 107.8o  γ=97.0o 
 X Y Z 
 -0.26937 3.786473 0.828571 
 1.414518 1.262492 2.13233 
 -0.20074 1.26299 4.872819 
 0.562624 3.786185 3.724435 
 -1.05343 3.786882 6.465223 
 0.629027 1.263217 7.770206 
 -2.56254 3.786744 9.276017 
 -0.97524 1.262959 10.67456 
 -2.57641 1.263558 13.54806 
 -2.56362 3.786924 12.12815 
 -4.16372 3.787497 15.00199 
 -2.57483 1.263523 16.39955 
ω-phase a= 3.110  b= 5.023  c= 18.146  α= 90.0o  β= 107.2o  γ=90.0o 
 X Y Z 
 0.028022 3.764211 0.72929 
 1.663281 1.253507 2.1672 
 0.243382 1.251384 5.062601 
 0.186679 3.763784 3.605641 
 -1.23318 3.761712 6.500877 
 0.401989 1.249031 7.939045 
 -2.6519 3.758874 9.396066 
 -1.01699 1.246181 10.83521 
 -2.43698 1.244118 13.73083 
 -2.49348 3.756518 12.27314 
 -3.91364 3.754386 15.1693 
 -2.27876 1.243694 16.6084 
 


