Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information

D-A-D-Type Narrow-Bandgap Small-Molecule Photovoltaic Donors: Pre-Synthesis Virtual Screening by Density Functional Theory

Yeongrok Gim,^a Daekyeom Kim,^a Minkyu Kyeong,^a Seunghwan Byun,^a Yuri Park,^b Sooncheol Kwon,^b

Heejoo Kim,^b Sukwon Hong,^{a,b,c,*} Yves Lansac,^{d,*} and Yun Hee Jang^{a,*}

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea, ^b Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 61005, Korea, ^c Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea, ^d GREMAN, UMR 7347, Université François Rabelais, 37200 Tours, France. ^{*} Corresponding author: yhjang@gist.ac.kr, shong@gist.ac.kr, lansac@univ-tours.fr

Table of Contents

S1. Dihedral energy curves between two component units	S2
S2. Cartesian coordinates of the DFT optimized structures	S3
S3. Solvent effects on the DFT calculations	S12
S4. Electrochemical and spectroscopic analysis	S14
S5. Device fabrication and characterization	S14
S6. Materials	S15
S7. Synthesis	S16
S8. NMR spectra	S18
S9. Hole mobility measurement for 1, TPD(BDT-PyOBn) ₂	S22
S10. Reference	S23

Figure S1. Dihedral energy curve for each pair of component units in 1-4 (TPD-BDT and four different SA-BDT combinations), which predicts a planar minimum-energy structure for 1-3 and a slight twist at pyridone termini for 4.

0	x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)
N 1	9.69211	-0.49721	0.06434	Н	25	13.86358	-9.67365	-0.23882	С	49	-8.12482	-1.23733	0.08161
C 2	8.57383	-1.22499	0.04253	Ν	26	-6.31285	1.20244	0.06113	С	50	-9.17726	-2.17981	0.11705
C 3	7.37186	-0.41149	0.02438	С	27	-5.37126	0.25728	0.05615	С	51	-8.75305	-3.48811	0.18523
N 4	7.61505	0.89728	0.03308	С	28	-4.02626	0.80168	0.02230	S	52	-7.00399	-3.55605	0.23070
S 5	9.24303	1.07978	0.06489	Ν	29	-3.99095	2.13243	0.00270	С	53	-9.53230	-4.70718	0.22042
C 6	6.07973	-1.05478	0.00181	S	30	-5.54528	2.65112	0.02442	С	54	-9.15215	-5.98477	-0.12507
C 7	8.46696	-2.65783	0.03571	С	31	-2.89691	-0.09673	0.01400	С	55	-10.18488	-6.94704	0.02992
C 8	7.15807	-3.12381	0.01527	С	32	-5.56494	-1.16618	0.07965	С	56	-11.34919	-6.40512	0.49280
N 9	6.03636	-2.37989	-0.00156	С	33	-4.38197	-1.89498	0.05909	S	57	-11.20090	-4.70107	0.76275
C 10	9.60795	-3.55269	0.05330	Ν	34	-3.13014	-1.40157	0.03049	н	58	-4.42906	-2.97920	0.06506
C 11	10.95321	-3.26136	0.14591	С	35	4.82023	-0.35156	-0.01249	н	59	5.31415	1.74821	-0.01738
C 12	11.78528	-4.40323	0.16296	С	36	4.52875	1.00617	-0.01947	н	60	-1.55822	2.48351	-0.02038
C 13	11.09983	-5.59472	0.08148	S	37	3.34968	-1.32194	-0.01747	н	61	1.25157	4.53445	-1.63560
S 14	9.37926	-5.29636	-0.04525	С	38	3.14774	1.28851	-0.02761	н	62	3.00930	4.34639	-1.63113
C 15	11.60770	-6.94990	0.08984	С	39	2.38875	0.11573	-0.02553	н	63	1.99749	3.17696	-2.49168
C 16	10.95411	-8.11461	0.42493	Si	40	1.94633	2.75293	-0.03755	н	64	1.24870	4.55662	1.53355
C 17	11.76898	-9.27336	0.32495	С	41	0.95590	0.26916	-0.02502	н	65	1.98996	3.21018	2.41084
C 18	13.04027	-8.99337	-0.08630	С	42	0.46218	1.57605	-0.03001	н	66	3.00616	4.36658	1.53782
S 19	13.26309	-7.30039	-0.37464	С	43	-0.94722	1.59225	-0.02024	н	67	-8.27102	-0.16978	0.01787
H 20	6.97828	-4.19411	0.01574	С	44	-1.51878	0.32701	-0.00745	н	68	-10.22321	-1.90677	0.06768
H 21	11.31671	-2.24718	0.21223	S	45	-0.28702	-0.93252	-0.00876	н	69	-8.16547	-6.21864	-0.50258
H 22	12.86194	-4.35419	0.25968	С	46	2.06184	3.80026	-1.59677	Н	70	-10.06896	-7.99734	-0.20166
H 23	9.92456	-8.13175	0.75728	С	47	2.05824	3.82103	1.50764	Н	71	-12.28764	-6.89756	0.69428
H 24	11.42599	-10.27268	0.55736	С	48	-6.86721	-1.80317	0.11954					

Table S1. Cartesian coordinates (Å) of the DFT optimized structure of the compound **0**, DTS(PTTh₂)₂

Table S2. Cartesian coordinates (Å) of the DFT optimized structure of the compound $\mbox{PC}_{\rm 61}\mbox{BM}$

PCBM	x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)
0 1	-0.77432	3.55150	-3.98296	C 31	-0.98541	-1.64281	-2.86662	C 61	-3.85046	-3.47511	0.08436
0 2	-0.65760	5.67213	-4.72607	C 32	0.43832	-1.76896	-2.68369	C 62	-3.61535	-3.81626	1.41419
C 3	0.33144	1.73307	0.61393	C 33	0.73293	-3.14532	-2.32907	C 63	1.31709	2.56423	-0.18753
C 4	1.24558	1.09662	-0.55758	C 34	1.72893	-3.42630	-1.40056	C 64	2.54562	3.06492	0.53638
C 5	2.18016	0.01796	-0.11934	C 35	1.51615	-4.44545	-0.39137	C 65	2.39937	3.89143	1.65544
C 6	2.39038	-0.31679	1.20507	C 36	2.13098	-3.98705	0.84159	C 66	3.51303	4.42684	2.29504
C 7	1.55978	0.26670	2.27301	C 37	1.51552	-4.24726	2.06246	C 67	4.79317	4.14294	1.82391
C 8	0.54952	1.16210	1.97535	C 38	1.46753	-3.21655	3.08411	C 68	4.95013	3.32330	0.71003
C 9	-0.73044	1.02150	2.62235	C 39	0.18927	-3.31866	3.76502	C 69	3.83361	2.78812	0.07084
C 10	-1.76823	1.31370	1.65542	C 40	-0.47002	-2.16546	4.18095	C 70	0.72962	3.58502	-1.17036
C 11	-1.14256	1.63955	0.39873	C 41	-1.90641	-2.04875	4.00227	C 71	1.61677	3.85369	-2.39254
C 12	-1.71157	1.18450	-0.77664	C 42	-2.62222	-3.08829	3.41341	C 72	1.07686	4.96692	-3.29382
C 13	-0.87920	0.60247	-1.84432	C 43	-3.66263	-2.79567	2.44344	C 73	-0.21017	4.61756	-4.01410
C 14	0.49123	0.49729	-1.69919	C 44	-3.94456	-1.47530	2.10161	C 74	-1.87441	5.45938	-5.46561
C 15	1.14600	-0.72695	-2.08650	C 45	-4.18726	-1.11980	0.71480	H 75	1.40633	4.10896	2.03340
C 16	2.18208	-1.01985	-1.11827	C 46	-4.13924	-2.10072	-0.27163	H 76	3.38125	5.06023	3.16485
C 17	2.47251	-2.34233	-0.78565	C 47	-3.49165	-1.82136	-1.54081	H 77	5.66192	4.55472	2.32451
C 18	2.72180	-2.68649	0.59102	C 48	-2.81291	-3.02940	-1.97414	H 78	5.94240	3.09431	0.33851
C 19	2.66625	-1.69044	1.56650	C 49	-1.58527	-2.94085	-2.62402	H 79	3.96702	2.14372	-0.79006
C 20	2.02646	-1.96608	2.83777	C 50	-0.52163	-3.87155	-2.29161	H 80	-0.25053	3.25812	-1.51481
C 21	1.34236	-0.76216	3.26752	C 51	-0.72890	-4.84969	-1.32218	H 81	0.57854	4.51679	-0.61307
C 22	0.11981	-0.86372	3.93242	C 52	0.31125	-5.14246	-0.35211	H 82	1.71426	2.93404	-2.97682
C 23	-0.94350	0.05061	3.60029	C 53	-0.32736	-5.41382	0.92122	H 83	2.62023	4.13973	-2.06665
C 24	-2.20015	-0.67468	3.64326	C 54	0.26419	-4.97624	2.10380	H 84	0.90607	5.88997	-2.72957
C 25	-3.19612	-0.39449	2.71411	C 55	-0.55597	-4.40203	3.15664	H 85	1.81134	5.22663	-4.06344
C 26	-2.97851	0.62323	1.70246	C 56	-1.93330	-4.28954	2.98262	H 86	-1.74169	4.66306	-6.19952
C 27	-3.58860	0.17929	0.47422	C 57	-2.54769	-4.74111	1.74772	H 87	-2.68844	5.18915	-4.79143
C 28	-2.95511	0.44558	-0.73970	C 58	-1.76193	-5.29116	0.73913	H 88	-2.08295	6.40541	-5.96000
C 29	-2.90872	-0.57784	-1.76511	C 59	-2.00922	-4.94082	-0.64737				
C 30	-1.62938	-0.48144	-2.43975	C 60	-3.03004	-4.04932	-0.96843				

Table S3. Cartesian coordinates (Å) of the DFT-optimized structure of the compound 1.

1		x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)
С	1	-6.33012	0.63288	0.06662	С	41	3.76006	0.85145	-0.14680	H 81	-10.66312	-4.06822	-0.30080
С	2	-7.38367	-0.27064	0.01890	С	42	2.65945	0.04276	-0.03085	H 82	-16.17611	0.72004	0.38481
С	3	-7.18113	-1.67402	-0.11020	S	43	3.10276	-1.66776	0.16496	H 83	-17.98106	2.40461	0.55870
С	4	-5.87453	-2.18602	-0.18925	0	44	6.55005	1.99645	-0.34054	H 84	-17.42833	4.82261	0.61603
0	5	-5.64483	-3.53302	-0.34384	С	45	1.15616	3.10276	-0.08310	H 85	-15.05290	5.54066	0.49594
С	6	-9.51601	-1.57282	-0.06721	С	46	-1.19117	3.09821	-0.10820	H 86	-13.25856	3.85823	0.31883
С	7	-8.42043	-2.38284	-0.16631	Ν	47	-0.01747	3.87133	-0.10782	H 87	-14.70813	-2.59009	-0.12848
S	8	-9.08916	0.13310	0.10162	0	48	2.27287	3.57861	-0.07955	H 88	8.46545	-3.41339	0.24454
С	9	-4.82373	-1.28248	-0.14637	0	49	-2.31269	3.56211	-0.12459	H 89	3.67700	1.92083	-0.28030
С	10	-5.02082	0.12260	-0.01476	С	50	1.27665	0.44542	-0.04680	H 90	-1.04781	5.65594	-0.12520
С	11	-3.78694	0.83671	0.03744	С	51	0.69515	1.69591	-0.06863	H 91	0.51104	5.71567	0.74299
С	12	-2.68279	0.03259	-0.07543	С	52	-0.72351	1.69376	-0.08015	H 92	0.49016	5.68856	-1.03050
S	13	-3.11844	-1.68194	-0.25310	С	53	-1.30153	0.44127	-0.06933	H 93	6.68517	3.82468	0.52678
0	14	-6.58205	1.96953	0.23367	S	54	-0.01069	-0.76081	-0.04135	H 94	5.36129	2.82822	1.17649
С	15	-6.43607	2.78156	-0.94353	С	55	-0.01119	5.32399	-0.13177	H 95	7.05494	2.47300	1.63237
С	16	-5.55987	-4.27183	0.88476	С	56	6.39765	2.81876	0.82866	H 96	5.37479	-5.28801	-0.65351
0	17	-13.97865	-0.14196	0.10943	С	57	5.55838	-4.25349	-0.94117	H 97	4.73518	-3.89683	-1.56774
Ν	18	-11.80095	-0.90486	0.01998	0	58	13.95951	-0.07285	-0.08522	H 98	6.49560	-4.18891	-1.50300
С	19	-13.63567	-2.45033	-0.12107	Ν	59	11.78276	-0.84628	-0.04017	H 99	13.10738	-4.45932	0.23378
С	20	-12.74329	-3.50089	-0.23096	С	60	13.62369	-2.38632	0.08497	H 100	10.65760	-4.02246	0.18835
С	21	-11.36996	-3.25429	-0.21564	С	61	12.73600	-3.44356	0.15807	H 101	13.94113	3.31095	-1.87845
С	22	-10.93427	-1.93427	-0.08892	С	62	11.36133	-3.20315	0.13444	H 102	15.78799	4.95243	-1.78947
С	23	-13.09767	-1.15836	0.00381	С	63	10.92065	-1.88260	0.03582	H 103	17.50087	4.79978	-0.00062
С	24	-13.45684	1.18628	0.24889	С	64	13.08102	-1.09326	-0.01409	H 104	17.34928	2.99648	1.69752
С	25	-14.59799	2.17074	0.34257	С	65	13.42995	1.26811	-0.16316	H 105	15.49360	1.36353	1.60975
С	26	-15.93330	1.77383	0.41087	С	66	14.58499	2.23371	-0.13340	H 106	14.69702	-2.51869	0.09861
С	27	-16.94687	2.72720	0.50814	С	67	14.68322	3.24586	-1.08927	H 107	-12.81504	1.41587	-0.60687
С	28	-16.63857	4.08373	0.54048	С	68	15.72524	4.17108	-1.04036	H 108	-12.82718	1.23353	1.14324
С	29	-15.30514	4.48630	0.47324	С	69	16.68694	4.08449	-0.03807	H 109	12.75263	1.42730	0.68113
С	30	-14.29436	3.53626	0.37352	С	70	16.60104	3.07045	0.91612	H 110	12.84437	1.37809	-1.07862
С	31	6.30438	0.66024	-0.16167	С	71	15.55579	2.15411	0.87065				
С	32	7.36226	-0.23739	-0.10010	н	72	-8.47245	-3.45482	-0.29399				
С	33	7.16608	-1.64072	0.03933	н	73	-3.70886	1.90767	0.15899				
С	34	5.86170	-2.15849	0.11738	н	74	-6.72764	3.78893	-0.65036				
0	35	5.63824	-3.50545	0.28206	н	75	-5.40062	2.79276	-1.29390				
С	36	9.50058	-1.52829	0.00587	Н	76	-7.09357	2.42521	-1.74245				
С	37	8.40856	-2.34296	0.10632	Н	77	-5.37081	-5.30733	0.60428				
S	38	9.06623	0.17438	-0.17561	Н	78	-4.73814	-3.90620	1.50804				
С	39	4.80661	-1.26066	0.06229	Н	79	-6.49696	-4.20848	1.44692				
С	40	4.99720	0.14411	-0.08190	Н	80	-13.11062	-4.51615	-0.32913				

Table S4. Cartesian coordinates (Å) of the DFT optimized structure of the compound 2.

2		x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)
С	1	0.01728	0.02811	-0.00963	С	31	-15.00936	-0.54664	0.05138	Н	61	-2.36710	1.68460	-0.27931
С	2	0.91386	-1.01996	0.15223	S	32	-15.25253	2.05881	0.09180	н	62	0.91715	3.13977	0.36383
С	3	0.49080	-2.35046	0.43179	С	33	-11.27991	-0.05677	0.03019	н	63	-0.54595	2.44229	1.09922
С	4	-0.88043	-2.63676	0.54761	С	34	-11.24182	1.36762	0.03728	Н	64	1.07087	1.86190	1.60061
0	5	-1.32128	-3.90504	0.84508	С	35	-9.90692	1.87051	0.04688	Н	65	-1.87703	-5.70672	0.09189
С	6	2.81183	-2.62680	0.40929	С	36	-8.95095	0.88869	0.02107	Н	66	-2.28298	-4.33058	-0.96724
С	7	1.60161	-3.23650	0.58206	S	37	-9.66388	-0.73954	-0.01477	Н	67	-0.59414	-4.89860	-0.84989
S	8	2.66161	-0.90386	0.04892	0	38	-12.47567	3.46112	0.10309	Н	68	7.77697	-4.44041	0.63300
С	9	-1.77422	-1.58845	0.39054	С	39	-6.97863	3.65627	-0.24617	Н	69	3.54924	-5.23088	0.93021
С	10	-1.35630	-0.25578	0.10843	С	40	-4.66193	3.28134	-0.18923	Н	70	5.89506	-6.05636	1.03106
С	11	-2.46063	0.63494	-0.03986	Ν	41	-5.69742	4.22608	-0.29379	Н	71	8.09456	-0.09291	-0.29495
С	12	-3.67860	0.03381	0.14401	0	42	-8.00521	4.30034	-0.31657	Н	72	6.52837	-0.49323	-1.06528
S	13	-3.52120	-1.69795	0.51497	0	43	-3.48079	3.56022	-0.20982	Н	73	6.58753	-0.12641	0.67154
0	14	0.47735	1.28147	-0.31905	С	44	-7.52147	1.06500	0.01291	Н	74	-15.23832	-1.60233	0.01620
С	15	0.47180	2.22919	0.76168	С	45	-6.74788	2.20160	-0.09568	Н	75	-9.65280	2.92058	0.07666
С	16	-1.52720	-4.75110	-0.29686	С	46	-5.34764	1.97528	-0.06415	Н	76	-4.39549	5.81670	-0.43994
С	17	6.73964	-4.13589	0.60147	С	47	-4.97688	0.65354	0.07271	Н	77	-5.90576	6.01714	-1.36963
С	18	6.41350	-2.79565	0.32997	S	48	-6.44323	-0.32345	0.16088	Н	78	-5.92747	6.19588	0.39502
Ν	19	5.17302	-2.34320	0.27419	С	49	-5.47179	5.65422	-0.43601	Н	79	-12.31957	5.19570	-0.93600
С	20	4.15504	-3.20389	0.48695	С	50	-12.19788	4.13247	-1.13723	Н	80	-11.17466	3.94310	-1.47225
С	21	4.37587	-4.55410	0.76276	С	51	-12.50123	-2.78083	1.30493	Н	81	-12.90503	3.82056	-1.91198
С	22	5.69309	-5.01266	0.81814	С	52	-20.16379	0.25369	0.04071	Н	82	-12.48688	-3.85407	1.11875
0	23	7.44275	-1.95186	0.12016	С	53	-19.41875	1.44570	0.05919	Н	83	-11.63024	-2.50257	1.90610
С	24	7.13106	-0.58071	-0.15922	Ν	54	-18.09765	1.48068	0.06667	Н	84	-13.41483	-2.51370	1.84547
С	25	-12.44871	2.09179	0.05471	С	55	-17.41465	0.31631	0.05668	Н	85	-21.24452	0.29588	0.03504
С	26	-13.63732	1.37377	0.06878	С	56	-18.06326	-0.91937	0.03935	Н	86	-17.50143	-1.84333	0.03227
С	27	-13.66977	-0.04970	0.06395	С	57	-19.45900	-0.93547	0.03095	Н	87	-19.98997	-1.88061	0.01679
С	28	-12.46582	-0.77490	0.04923	0	58	-20.11788	2.59744	0.06917	Н	88	-20.12913	4.61039	0.09685
0	29	-12.46199	-2.14979	0.01557	С	59	-19.37640	3.82424	0.08886	Н	89	-18.74901	3.88799	0.98002
C	30	-15.95577	0.43842	0.06489	Н	60	1.48293	-4.28253	0.82679	Н	90	-18.74284	3.91219	-0.79591

Table S5. Cartesian coordinates (Å) of the DFT optimized structure of the compound 3.

3		x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)
С	1	-0.00337	-0.01523	0.01095	С	31	-10.64976	8.68835	-6.08170	Н	61	-2.13606	-1.69218	0.15937
С	2	1.35020	-0.05844	-0.29645	S	32	-12.58781	7.37111	-4.91589	н	62	-0.59748	-2.60428	0.09954
С	3	1.91989	0.71495	-1.34738	С	33	-8.23613	6.34383	-4.40023	н	63	2.48203	4.05768	-3.69384
С	4	1.10131	1.56494	-2.11118	С	34	-9.16949	5.53870	-3.68528	н	64	1.33052	4.21554	-2.34129
0	5	1.61513	2.30386	-3.15080	С	35	-8.52836	4.51020	-2.93311	н	65	2.94361	3.50273	-2.06138
С	6	3.80683	-0.42613	-0.57226	С	36	-7.16172	4.52803	-3.03393	Н	66	8.65894	-2.38192	0.25028
С	7	3.32131	0.47063	-1.48133	S	37	-6.58461	5.84007	-4.08556	Н	67	8.33255	-0.73094	-1.61501
S	8	2.55789	-1.03564	0.51830	0	38	-11.49298	5.04261	-3.17062	Н	68	6.06648	0.20543	-2.02511
С	9	-0.25085	1.60362	-1.80640	С	39	-7.56494	2.08904	-0.68768	Н	69	-10.10410	9.41647	-6.66504
С	10	-0.82536	0.83275	-0.75468	С	40	-5.61611	0.95832	-0.02913	Н	70	-9.05222	3.77548	-2.33832
С	11	-2.22563	1.06742	-0.61778	Ν	41	-7.00654	1.09213	0.12623	Н	71	-7.11506	-0.40472	1.53852
С	12	-2.72484	1.95622	-1.53379	0	42	-8.74824	2.35915	-0.70588	Н	72	-8.29633	0.91257	1.77308
S	13	-1.46593	2.56294	-2.63295	0	43	-4.93641	0.15860	0.58043	Н	73	-8.55263	-0.28182	0.48692
0	14	-0.49090	-0.74935	1.06012	С	44	-6.23054	3.63602	-2.39192	н	74	-12.47862	4.65163	-1.44186
С	15	-4.09049	2.39458	-1.66756	С	45	-6.42337	2.65418	-1.44278	Н	75	-10.75481	5.02582	-1.20540
С	16	-1.21954	-1.93618	0.70301	С	46	-5.24559	1.97207	-1.04276	н	76	-11.91153	6.33823	-1.58291
С	17	2.11998	3.59521	-2.77641	S	47	-4.51219	3.69110	-2.78707	н	77	-6.63496	8.41967	-7.59085
С	18	7.69403	-1.94562	0.03098	С	48	-7.79588	0.28067	1.03700	н	78	-6.96777	6.71078	-7.20460
С	19	7.49750	-1.03397	-0.99357	С	49	-11.65689	5.28944	-1.76374	н	79	-8.26901	7.74966	-7.84960
С	20	6.22894	-0.50600	-1.22722	С	50	-7.38137	7.72386	-7.20959	н	80	-15.79849	11.73952	-8.03289
С	21	5.17479	-0.91957	-0.40731	С	51	-14.97899	11.15101	-7.64354	Н	81	-13.40323	12.25033	-8.59271
Ν	22	5.36163	-1.80621	0.59038	С	52	-13.65313	11.41940	-7.94277	Н	82	-11.60286	10.82670	-7.63771
С	23	6.57380	-2.29489	0.79596	С	53	-12.64024	10.62393	-7.40997	н	83	-16.48322	8.99957	-5.90269
0	24	6.72736	-3.17991	1.80343	С	54	-12.99840	9.56142	-6.57490	н	84	5.85524	-3.28810	2.20781
С	25	-10.54634	5.80697	-3.80055	Ν	55	-14.28690	9.29691	-6.28127					
C	26	-10.93672	6.85705	-4.62120	С	56	-15.23327	10.06365	-6.79791					
С	27	-10.00040	7.65774	-5.33483	0	57	-16.51333	9.77152	-6.48493					
С	28	-8.62503	7.38943	-5.22374	Н	58	3.92431	0.94312	-2.24379					
0	29	-7.69353	8.16113	-5.87770	Н	59	-2.84918	0.60251	0.13243					
С	30	-12.01076	8.67022	-5.96471	Н	60	-1.47686	-2.42332	1.64224					

Table S6. Cartesian coordinates (Å) of the DFT optimized structure of the compound 4.

4		x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)			x (Å)	y (Å)	z (Å)
С	1	0.00620	0.00642	0.00137	С	31	-10.66509	8.72163	-6.03248	Н	61	-2.25041	-1.39131	0.64445
С	2	1.31188	-0.16994	-0.43545	S	32	-12.54547	7.67705	-4.54608	н	62	-0.83780	-2.47275	0.45354
С	3	1.81598	0.42958	-1.62254	С	33	-8.23710	6.41618	-4.31678	н	63	2.31902	3.39532	-4.44182
С	4	0.97240	1.23465	-2.40628	С	34	-9.13833	5.76067	-3.42869	н	64	1.32896	3.81399	-3.01840
0	5	1.41300	1.79607	-3.57916	С	35	-8.48462	4.77596	-2.62981	н	65	2.91834	3.02945	-2.80136
С	6	3.70204	-0.75486	-0.90512	С	36	-7.13682	4.68992	-2.86127	Н	66	8.71348	-2.60062	-0.98692
С	7	3.17747	0.06454	-1.86485	S	37	-6.59483	5.83838	-4.10344	Н	67	6.97459	-3.86507	0.24419
S	8	2.54200	-1.12162	0.37695	0	38	-11.43246	5.49966	-2.64807	Н	68	4.61431	-3.05553	0.29170
С	9	-0.33485	1.40815	-1.97450	С	39	-7.43929	2.57054	-0.20992	Н	69	5.82874	0.25819	-1.94914
С	10	-0.83918	0.81743	-0.77986	С	40	-5.50600	1.38192	0.38705	Н	70	-10.13139	9.36545	-6.71871
С	11	-2.19778	1.17681	-0.53449	Ν	41	-6.86078	1.63508	0.66033	Н	71	-8.98513	4.14504	-1.90940
С	12	-2.73502	1.98159	-1.50470	0	42	-8.59877	2.92359	-0.14647	Н	72	-6.91227	0.32152	2.24815
S	13	-1.56860	2.34769	-2.79382	0	43	-4.81524	0.61026	1.01955	Н	73	-7.97699	1.74152	2.43544
0	14	-0.39558	-0.56158	1.17985	С	44	-6.19866	3.80979	-2.21180	н	74	-8.44241	0.43018	1.33492
С	15	-4.07702	2.50415	-1.55664	С	45	-6.35099	2.95997	-1.13656	Н	75	-12.24997	5.33958	-0.79937
С	16	-1.28681	-1.68582	1.06700	С	46	-5.18259	2.24281	-0.77434	н	76	-10.47994	5.51706	-0.77495
С	17	2.03012	3.08667	-3.43828	S	47	-4.53285	3.69172	-2.77787	н	77	-11.51538	6.93325	-1.12707
С	18	7.68766	-2.26022	-0.94312	С	48	-7.59823	0.99386	1.73624	н	78	-6.83760	8.02410	-7.85769
С	19	6.72120	-2.94172	-0.26599	С	49	-11.40343	5.85215	-1.25308	н	79	-7.21896	6.39042	-7.25163
С	20	5.37753	-2.48294	-0.21500	С	50	-7.57841	7.42029	-7.33572	н	80	-8.52037	7.43148	-7.89292
С	21	5.04892	-1.31567	-0.85743	С	51	-14.63133	11.52941	-7.75929	Н	81	-15.26096	12.22124	-8.30247
Ν	22	6.03642	-0.63576	-1.52432	С	52	-14.95767	11.06427	-6.52069	н	82	-15.87469	11.39906	-6.04733
С	23	7.39106	-1.01986	-1.63480	С	53	-14.12247	10.15444	-5.81841	н	83	-14.37470	9.82640	-4.82046
0	24	8.17257	-0.31721	-2.25485	С	54	-12.96097	9.72583	-6.41037	н	84	-11.83578	9.84162	-8.14171
С	25	-10.50172	6.11250	-3.44227	Ν	55	-12.65343	10.19459	-7.66251					
С	26	-10.90481	7.08919	-4.34250	С	56	-13.41654	11.10337	-8.42837					
С	27	-10.00523	7.73427	-5.23541	0	57	-13.03122	11.43558	-9.53748					
С	28	-8.64357	7.38836	-5.21957	н	58	3.70927	0.36554	-2.75750					
0	29	-7.73970	8.01858	-6.03867	н	59	-2.76540	0.86027	0.32860					
С	30	-12.00537	8.81787	-5.78324	Н	60	-1.43520	-2.05064	2.08194					

Table S7. Cartesian coordinates (Å) of the DFT optimized structure of the compound 5.

5	x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)
C 1	0.02066	0.03062	0.14452	C 31	2.58878	12.25885	-1.11490	N 6	1 -2.90640	-5.47061	0.69582
C 2	-0.64252	-1.16788	0.36982	C 32	-3.63154	13.32629	2.61659	C 6	2 -1.63286	-4.96022	0.69226
C 3	-1.95763	-1.22698	0.90723	S 33	2.48576	6.23417	-0.30217	C 6	3 -0.57772	-5.83637	0.74598
C 4	-2.62877	-0.03652	1.23491	N 34	1.39941	5.04998	0.00825	C 6	4 -0.84306	-7.23066	0.80471
O 5	-3.88423	-0.06421	1.79127	N 35	1.54469	7.53998	-0.00523	C 6	5 -2.11489	-7.72014	0.81969
C 6	-1.49515	-3.50783	0.65691	C 36	0.25436	5.63757	0.35572	O 6	6 -4.44043	-7.15636	0.74916
C 7	-2.40557	-2.57581	1.06877	C 37	0.34025	7.09328	0.35103	C 6	7 -1.43010	19.88346	1.53020
S 8	-0.01621	-2.77108	0.02703	C 38	-0.79419	7.91066	0.70367	N 6	8 -1.24856	18.48628	1.43385
C 9	-1.96498	1.16187	1.01244	C 39	-1.93840	7.20633	1.03560	C 6	9 -0.24669	17.83944	0.75540
C 10	-0.65197	1.22237	0.46700	C 40	-2.02281	5.79772	1.03583	C 7	0 0.69474	18.59584	0.10318
C 11	-0.19754	2.56746	0.30706	C 41	-0.96931	4.96160	0.70944	C 7	0.59544	20.01200	0.15365
C 12	-1.09447	3.51239	0.72681	H 42	-3.35347	-2.82055	1.52907	C 7	2 -0.41355	20.63826	0.82229
S 13	-2.58375	2.76523	1.35829	H 43	0.75873	2.82809	-0.11675	07	3 -2.36480	20.33098	2.17475
O 14	1.27455	0.03277	-0.41215	H 44	3.27014	0.17386	-0.07226	H 7	4 -3.69548	-4.84646	0.59309
C 15	2.35558	0.21113	0.51781	H 45	2.28569	1.17802	1.02430	Η 7	5 0.43548	-5.46265	0.77523
C 16	-4.96453	-0.04423	0.84399	H 46	2.36580	-0.59110	1.26213	Η 7	6 -0.00439	-7.91770	0.84659
C 17	0.87717	12.68205	0.47099	H 47	-5.88225	-0.06684	1.42994	Η 7	7 -2.32717	-8.77993	0.86308
C 18	0.33524	13.95282	0.60681	H 48	-4.93905	0.86584	0.23729	Η 7	8 -1.91488	17.94941	1.97287
C 19	-1.04328	14.17345	0.87660	H 49	-4.92648	-0.91907	0.18711	Η 7	9 1.47775	18.11439	-0.46445
C 20	-1.90996	13.07520	1.00978	H 50	-2.36672	15.93010	1.06961	H 8	0 1.34316	20.60390	-0.36378
0 21	-3.25286	13.25871	1.23209	H 51	1.32553	9.81344	0.37681	H 8	1 -0.49715	21.71579	0.86750
C 22	-0.27242	16.38033	0.75726	H 52	3.67463	12.17619	-1.12430				
C 23	-1.35530	15.56785	0.94277	H 53	2.14718	11.32261	-1.46808				
S 24	1.21830	15.46550	0.49726	H 54	2.27724	13.07911	-1.76898				
C 25	-1.36907	11.80458	0.87126	H 55	-4.71118	13.46867	2.62918				
C 26	0.01197	11.58252	0.60938	H 56	-3.37766	12.39949	3.13962				
C 27	0.32890	10.19117	0.53821	H 57	-3.14396	14.16964	3.11589				
C 28	-0.74852	9.36464	0.71013	H 58	-2.83062	7.75287	1.31691				
S 29	-2.24757	10.29100	0.97416	H 59	-2.97682	5.36190	1.30752				
O 30	2.22175	12.52409	0.24898	C 60	-3.26301	-6.83552	0.76070				

Table S8. Cartesian coordinates (Å) of the DFT optimized structure of the compound 6.

6	x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)
C 1	0.02900	0.00256	0.09338	C 31	2.54041	12.06543	-1.21906	N 61	-2.65826	-5.62800	0.53993
C 2	-0.58146	-1.22578	0.29690	C 32	-3.59001	13.41171	2.57228	C 62	-1.40886	-5.06173	0.56574
C 3	-1.90297	-1.34883	0.81066	S 33	2.31396	6.17355	-0.31341	C 63	-0.31678	-5.89038	0.63234
C 4	-2.63360	-0.19530	1.13699	N 34	1.22268	4.99252	-0.00868	C 64	-0.52056	-7.29566	0.67401
O 5	-3.89460	-0.28937	1.67188	N 35	1.37000	7.47666	-0.01445	C 65	-1.76926	-7.84122	0.65950
C 6	-1.33511	-3.60430	0.54689	C 36	0.07873	5.57610	0.33656	O 66	-4.11580	-7.38120	0.54749
C 7	-2.29313	-2.71815	0.95066	C 37	0.16623	7.03392	0.33672	C 67	-1.11028	19.87668	1.36631
S 8	0.12147	-2.79689	-0.04937	C 38	-0.95930	7.87345	0.68668	N 68	-0.99064	18.47161	1.28843
C 9	-2.02240	1.03677	0.93643	C 39	-2.08630	7.14797	1.00727	C 69	-0.02715	17.77260	0.60624
C 10	-0.70575	1.15935	0.41381	C 40	-2.17279	5.73225	1.00202	C 70	0.93657	18.47794	-0.07013
C 11	-0.31021	2.52159	0.27391	C 41	-1.14041	4.87724	0.68209	C 71	0.89879	19.89771	-0.04015
C 12	-1.25682	3.42542	0.68582	F 42	-3.22395	7.77125	1.35339	C 72	-0.07255	20.57644	0.63285
S 13	-2.72674	2.60178	1.27554	F 43	-3.37615	5.24942	1.35029	0 73	-2.01505	20.37369	2.01705
O 14	1.29131	0.07190	-0.43993	H 44	-3.23796	-3.00871	1.39006	H 74	-3.47236	-5.03859	0.42741
C 15	2.34708	0.26613	0.51547	H 45	0.64283	2.82287	-0.12717	H 75	0.67789	-5.47207	0.68468
C 16	-4.96312	-0.27389	0.71062	H 46	3.27337	0.27981	-0.05712	H 76	0.34700	-7.94505	0.72663
C 17	0.86960	12.56827	0.38613	H 47	2.22995	1.21578	1.04561	H 77	-1.93480	-8.90977	0.68952
C 18	0.38596	13.86225	0.50714	H 48	2.37485	-0.55470	1.23870	H 78	-1.67177	17.97189	1.84446
C 19	-0.97952	14.14647	0.79033	H 49	-5.88627	-0.35269	1.28282	H 79	1.68994	17.95478	-0.64097
C 20	-1.89167	13.09148	0.95124	H 50	-4.96539	0.65863	0.13875	H 80	1.66355	20.44919	-0.57694
0 21	-3.22146	13.34094	1.18478	H 51	-4.88291	-1.12189	0.02302	H 81	-0.10920	21.65712	0.66281
C 22	-0.11570	16.31606	0.62948	H 52	-2.22297	15.96102	0.97571				
C 23	-1.22980	15.55421	0.84030	H 53	1.19032	9.69191	0.32947				
S 24	1.33180	15.33446	0.36440	H 54	3.62095	11.93136	-1.24169				
C 25	-1.40944	11.79382	0.82748	H 55	2.05045	11.15218	-1.56913				
C 26	-0.04315	11.51031	0.55434	H 56	2.26071	12.90135	-1.86757				
C 27	0.21234	10.10902	0.50113	H 57	-4.66058	13.61009	2.59141				
C 28	-0.89865	9.32861	0.69949	H 58	-3.38360	12.46696	3.08363				
S 29	-2.35190	10.32760	0.97678	H 59	-3.05640	14.22291	3.07778				
O 30	2.20231	12.34328	0.14976	C 60	-2.95457	-7.00812	0.58542				

Table S9. Cartesian coordinates (Å) of the DFT optimized structure of the compound 7.

7	x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)		x (Å)	y (Å)	z (Å)
C 1	-0.29734	0.06331	-0.10140	C 31	-1.34389	-7.97441	0.04401	C 61	-2.77345	-13.92292	1.71789
N 2	-0.56915	-1.31164	0.07179	C 32	-1.74919	-8.14793	1.39499	C 62	-2.51944	-12.52555	1.70540
C 3	-0.52653	-2.00829	1.25299	C 33	-2.09630	-9.50015	1.67524	C 63	-2.19914	-11.78981	0.58461
C 4	-0.20095	-1.32951	2.40069	C 34	-1.94983	-10.35356	0.60628	F 64	-3.08285	-14.40800	2.93190
C 5	0.08058	0.06057	2.32176	S 35	-1.37322	-9.48578	-0.84112	F 65	-2.62221	-11.94390	2.91204
C 6	0.04561	0.73477	1.13787	O 36	-2.19263	-7.16414	3.56986	H 66	-0.27712	-3.95829	-0.83863
07	-0.37868	0.56294	-1.21187	C 37	-1.17998	-7.60348	4.49006	H 67	-2.45683	-9.81132	2.64051
C 8	-4.43853	-26.64223	0.25876	C 38	-1.61412	-6.32755	-2.71561	H 68	-1.65537	-7.63687	5.46928
N 9	-4.22139	-25.25450	0.40505	C 39	-3.73167	-19.35471	2.42526	H 69	-0.81321	-8.60002	4.22659
C 10	-4.64435	-24.46889	1.44730	C 40	-3.92169	-20.63059	1.91720	H 70	-0.34120	-6.90104	4.51290
C 11	-5.34133	-25.06081	2.47094	C 41	-3.84829	-20.91852	0.52505	H 71	-1.13089	-6.24112	-3.68780
C 12	-5.59911	-26.45644	2.41122	C 42	-3.58024	-19.88546	-0.38691	H 72	-2.33928	-7.14631	-2.73868
C 13	-5.18217	-27.21998	1.36216	0 43	-3.54367	-20.13471	-1.73728	H 73	-2.13016	-5.39190	-2.47741
O 14	-3.99986	-27.22543	-0.71942	C 44	-4.34177	-23.04315	1.37507	H 74	-4.15930	-22.69064	-0.75321
H 15	-0.86852	-1.77888	-0.77369	C 45	-4.10467	-22.29956	0.25393	H 75	-3.18095	-16.55670	2.78663
H 16	-0.13002	-1.85776	3.34038	S 46	-4.25034	-22.07840	2.85515	H 76	-4.90478	-18.51537	5.34866
H 17	0.33734	0.59109	3.23269	C 47	-3.39293	-18.60429	0.11885	H 77	-5.27411	-17.66327	3.82594
H 18	0.25705	1.79330	1.06777	C 48	-3.45688	-18.32102	1.50996	H 78	-5.83646	-19.34112	4.07068
H 19	-3.65224	-24.85037	-0.32674	C 49	-3.20462	-16.94662	1.78366	H 79	-2.37790	-20.62455	-3.32553
H 20	-5.71307	-24.46221	3.28983	C 50	-2.97659	-16.18078	0.66386	H 80	-1.54138	-19.63226	-2.10242
H 21	-6.15063	-26.91801	3.22358	S 51	-3.05149	-17.16593	-0.82088	H 81	-1.84829	-21.36378	-1.79002
H 22	-5.37237	-28.28347	1.30826	0 52	-3.77372	-19.12696	3.77813				
C 23	-1.78013	-7.04273	2.26641	C 53	-5.02858	-18.63124	4.27292				
C 24	-1.41525	-5.80775	1.75281	C 54	-2.24372	-20.45647	-2.25788				
C 25	-1.01846	-5.62979	0.39735	Se 55	-1.84324	-13.41235	-3.00275				
C 26	-0.98227	-6.73401	-0.46874	N 56	-1.82242	-12.07812	-1.79561				
O 27	-0.56516	-6.59091	-1.76970	N 57	-2.27949	-14.64927	-1.77089				
C 28	-0.80691	-3.43922	1.19532	C 58	-2.12273	-12.59218	-0.61998				
C 29	-0.66823	-4.27069	0.12038	C 59	-2.37822	-14.04177	-0.60566				
S 30	-1.39737	-4.28726	2.63127	C 60	-2.71505	-14.74738	0.61474				

S3. Solvent effects on the DFT calculations

The solvent effect of CHCl₃ on the structure and the TDDFT transition energy of the compounds **0**-7 is considered by carrying out the same implicit-solvation-model calculations as done in our previous work on similar systems (J. Ku, Y. Gim, Y. Lansac, Y. H. Jang, Phys. Chem. Chem. Phys. 2016, 18, 1017): the conductor-like polarizable continuum model (CPCM) (V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995; M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669) of CHCl₃ with a dielectric constant (ϵ) of 4.7113 and the Universal Force Field (UFF) radii (Å) of H (1.443), C (1.925), N (1.83), O (1.75), F (1.682), Si (2.147), S (2.018), and Se (2.103) (A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024) as well as a scaling factor (α) of 1.1 to build the cavity of the solute **0**-7, as implemented in Gaussian09.

The solvent effect of CHCl₃ on the optimized structure is evaluated by a root-mean square deviation (RMSD; Å) between all the corresponding atoms in the two superimposed structures, one optimized in gas (gray, Fig. S2) and the other optimized in CHCl₃ (blue, Fig. S2), as summarized in Table S1. Only a marginal RMSD (< 0.2 Å) is obtained as a solvent effect. For **1**, which shows a higher RMSD of 0.73 Å due to the low-energy-barrier twisting of the benzene moiety in each SA unit, the RMSD excluding the benzene ring is listed in Table S1

Figure S2. Two superimposed structures of the compounds **0-7**, one optimized in the gas phase (gray) and the other optimized in the CHCl₃ solution (blue), which are used to evaluate the RMSD between all the corresponding atoms as a barometer of the solvation effect of CHCl₃ on the structure (Table S1).

Table S1. RMSD between all the corresponding atoms in the two superimposed structures, one optimized in gas (gray, Fig. S2) and the other optimized in CHCl₃ (blue, Fig. S2).

	0	1	2	3	4	5	6	7
RMSD (Å)	0.07	0.73 (0.15)	0.18	0.17	0.20	0.06	0.13	0.11

The solvent effect of CHCl₃ on the optical properties of **0-7** such as the lowest TDDFT transition energy (E_g) is represented by the shift (nm or eV) between the two lowest-energy (first from the right side, Fig. S3) peaks in the TDDFT absorption spectra of each compound, one calculated in gas (black curve) and the other calculated in CHCl₃ (red and blue curves depending on whether optimized in gas or in CHCl₃, which completely overlap each other within 0.5 nm or 0.003 eV), as summarized in Table S2. Only a marginal peak shift (< 0.08 eV or 30 nm) is obtained as a solvent effect.

Figure S3. TDDFT absorption spectra simulated (with a Gaussian broadening of 0.03 eV) for the compounds **0**-7. (Black bars and curves) those calculated in the gas phase; (red bars and curves) those calculated in CHCl₃ at the geometries optimized in the gas phase; (blue bars and curves) those calculated in CHCl₃ at the geometries optimized in CHCl₃. Whether the geometry is optimized in gas (red) or in solution (blue), there is essentially no effect on TDDFT absorption spectra. On the other hand, whether the TDDFT transition energy (the first peak maximum position from the right side) is calculated in gas (black) or in solution (red, blue) makes a marginal (< 30 nm or 0.08 eV) effect on the lowest TDDFT transition energy (the first peak maximum position).

$E_{ m g}$		0		1		2		3		4	:	5		6	,	7
geometry/energy	(nm)	(eV)	(nm)	(eV)	(nm)	(eV)	(nm)	(eV)								
1. gas/gas	781	1.59	537	2.31	537	2.31	535	2.32	530	2.34	622	1.99	651	1.91	705	1.76
2. gas/CHCl ₃	806	1.54	550	2.26	549	2.26	547	2.27	542	2.29	622	1.99	632	1.96	673	1.84
Δ(2-1)	25	-0.05	13	-0.05	12	-0.05	12	-0.05	12	-0.05	0	0.00	-19	0.05	-32	0.08
3. CHCl ₃ /CHCl ₃	807	1.54	549	2.26	549	2.26	547	2.29	542	2.29	622	1.99	632	1.96	673	1.84
Δ(3-2)	1	0.00	-1	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00

 Table S2. The solvent effect on the lowest TDDFT transition energies of 0-7

S4. Electrochemical and spectroscopic analysis

Cyclic voltammetry was conducted with Eco Chemie Autolab PGSTAT 30 through three-electrode system consisting of ITO as the working electrode, Pt wire as the counter electrode and Ag/AgCl electrode as the reference electrode in acetonitrile with 0.1 M Bu₄NClO₄ as the supporting electrolyte at a scan rate of 50 mV/s. UV/VIS spectroscopy was performed with Perkin Elmer Lambda 750.

S5. Device fabrication and characterization

a. Solar Cell: The inverted small molecule (SM) solar cells consisting of ITO/ZnO/SM:PC₇₀BM/MoO₃/Ag were fabricated as follows: the ITO-coated glass substrate was carefully cleaned with detergent and then ultrasonicated in deionized water, acetone and isopropyl alcohol for 30 min each. The cleaned ITO substrate was dried overnight in an oven at 80 °C. The dried ITO substrate was treated with UV/ozone for 15 min before casting ZnO layer. The ZnO precursor solutions diluted in 2-methoxyethanol were spin-cast in air on top of ITO. Then, the ZnO-coated substrate was annealed at 200 °C for 10 min in air and then transferred into a glove box. The SM:PC₇₀BM blend (1:0.8) in chloroform was spin-coated at 3000 rpm for 60 sec and then was annealed at 70 °C for 10 min. Certain volume of diiodooctane (DIO) as a processing additive was added to the blend solutions when needed. The blend solution was spin-cast on top of ZnO layer. Final devices were transferred into a metal deposition chamber. The hole transport layer MoO_3 (10 nm thickness) and anode electrode (Ag, 100 nm thickness) were deposited by thermal evaporation under high vacuum (5 x 10⁻⁷ Torr). The current density-voltage (J-V) characteristics were measured under air mass 1.5 global (AM 1.5G) illumination from a calibrated solar simulator with an irradiation intensity of 100 mW/cm² using a Keithley 236 source measure unit (SMU). The spectral mismatch factor was verified with the incident photon to charge carrier efficiency (IPCE) spectrum. IPCE (or external quantum efficiency, EQE) spectra were obtained using a solar cell spectral response/QE/incident photon-to-current efficiency (IPCE) measurement system (PV Measurements, Inc., Boulder, CO, USA).

b. Organic Field-Effect Transistor: To make the TPD(BDT-PyOBn)₂ (1) solution (5 wt%), 5 mg of TPD(BDT-PyOBn)₂ (1) was added into 1 ml of chloroform solvent. The resulting mixture was stirred at room temperature until the TPD(BDT-PyOBn)₂ (1) was completely dissolved in the solvent. Before the deposition

of the TPD(BDT-PyOBn)₂ (1) solution, heavily n-type-doped silicon substrates with 200-nm-thick SiO₂ were cleaned with acetone and isopropyl alcohol, respectively, for 10 min and dried at 100°C for 15 min. UV/ozone treatment for 30 minutes was used to clean the surface of substrates. The clean substrates were modified with octadecyltrichloro silane (OTS) self-assembled monolayer (SAM). The TPD(BDT-PyOBn)₂ (1) solution was deposited onto the substrates via spin casting procedure with 2000 rpm for 30 seconds under ambient/N₂ conditions. The final thickness of the TPD(BDT-PyOBn)₂ (1) was approximately 70 nm, as measured using a Surf Corder ET 3000. Then, top-contact and bottom-gate (TC/BG) field-effect transistors were finalized with Molybdenum trioxide ($t \sim 5$ nm) as a hole injection layer (HIL) and an Ag source and drain electrode (70 nm) with a channel length of 100 µm and a width of 1000 µm. The transfer and output characteristics were determined in a N₂-filled glove box using a Keithley 4200 source meter (internal impedance > 10¹⁰ Ω). The saturation-regime mobility of the transistor was determined using the following equation: $I_{ds} = (WCi/2L) \mu_{sat}(V_g - V_{th})^2$, where I_{ds} is the source-drain current, C_i (17.2 nF·cm⁻²) is the capacitance per unit area, L is the channel length, W is the channel width, and V_g and V_{th} are the gate and threshold voltages, respectively.

S6. Materials

All reactions were performed in flame-dried glassware under inert atmosphere of argon. THF was purified through solvent purification column (Flinn Scientific). Toluene was distilled before using in reactions. Pd(OAc)₂ was purchased from Strem Chemicals. PdCl₂(PPh₃)₂, n-BuLi, K₂CO₃, P^tBu₂Me•HBF₄, 1,3-Dibromo-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione were purchased from Sigma Aldrich. Pivalic acid, oxalyl chloride, diethylamine were purchased from Acros Organics. Trimethyltin chloride, 4,7-dibromo-2,1,3-benzothiadiazole, thiophene-3-carboxylic acid were purchased from Alfa Aesar. 2-Bromo-6-benzyloxypyridine (BnOPy) was purchased from TCI. Silica gel (230~400 mesh) was purchased from Merck. All reagents were used without further purification. 4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene was synthesized following the literature procedure¹.

Scheme S1. Synthesis of TPD(BDT-PyOBn)₂

(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)trimethylstannane (9)

Compound **8** (536 mg, 1.20 mmol) was dissolved in THF (22 ml) under inert atmosphere and the mixture was cooled down to -78 °C using a dry ice-acetone bath. 0.48 ml of n-BuLi (2.5 M in hexane, mmol) was added dropwise and the solution was stirred at the same temperature for 1 h. Then the solution was slowly warmed up to room temperature and stirred for 30 min. The cloudy mixture was cooled again and trimethyltin chloride (319 mg, 1.60 mmol) was added in one portion. The reaction mixture was stirred for 2 h at room temperature, was then poured into ice water, and was extracted with diethyl ether three times. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. It was used for the next step without any further purification.

1,3-bis(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione $(11)^2$

To a Schlenk flask filled with compound **9** (731 mg, 1.20 mmol), PdCl₂(PPh₃)₂ (19 mg, 0.0271 mmol, 6 mol%) was added in a glove box, followed by adding compound **10** (186 mg, 0.440 mmol) and THF (18 ml). The solution was refluxed for 24 h, then cooled and poured into water. The mixture was extracted with CH₂Cl₂. The organic combined phase was washed with brine, and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: hexane/CH₂Cl₂, 2:1, v/v) to provide red solid (381 mg, 0.330 mmol, 75 %). ¹H NMR (CDCl₃, 300 MHz), δ (ppm): 8.68 (s, 2H), 7.39 (dd, *J* = 12, 6, 4H), 4.24 (dd, *J* = 36, 6, 8H), 3.70 (t, *J* = 9, 2H), 1.92-1.30 (m, 48H), 1.10-0.89 (m, 27H). ¹³C NMR (CDCl₃, 75 MHz), δ (ppm): 152.8, 145.4, 144.3, 138.4, 132.6, 132.5, 130.4, 129.1, 127.0, 126.5, 126.4, 122.6, 120.5, 76.2, 76.0, 40.9, 40.8, 30.8, 30.6, 29.5, 29.4, 24.1, 24.0, 23.3, 23.3, 14.3, 14.3, 11.6, 11.5.

1,3-bis(6-(6-(benzyloxy)pyridin-2-yl)-4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-5-octyl-4Hthieno[3,4-c]pyrrole-4,6(5H)-dione (**TPD(BDT-PyOBn**)₂)

Pd(OAc)₂ (1.7 mg, 7.57*10⁻³ mmol, 3 mol%), P^tBu₂Me•HBF₄ (11.4 mg, 0.0460 mmol, 20 mol%), pivalic acid (23 mg, 0.225 mmol), potassium carbonate (95 mg, 0.687 mmol), compound **11** (263 mg, 0.228 mmol), and compound **12** (143 mg, 0.541 mmol) were added into a Schlenk flask, and then toluene (2 mL) was poured into the flask. The reactant was refluxed with stirring under an argon for 24 h. The solution was cooled and filtered over Celite[®]. The crude product was purified by column chromatography (eluent: hexane/CH₂Cl₂, 1:1, v/v) to afford red solid (248 mg, 0.163 mmol, 72 %). ¹H NMR (CDCl₃, 300 MHz), δ (ppm): 8.59 (s, 2H), 7.74 (s, 2H), 7.55 (d, *J* = 6, 4H), 7.47 (t, *J* = 9, 2H), 7.41-7.32 (m, 6H), 7.22 (d, *J* = 6, 2H), 6.61 (d, *J* = 6, 2H), 5.46 (s, 4H), 4.25 (dd, *J* = 36, 6, 8H), 3.72 (t, *J* = 9, 2H), 1.92-1.31 (m, 48H), 1.09-0.90 (m, 27H). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 163.0, 162.4, 149.6, 145.8, 145.6, 144.3, 139.2, 137.5, 137.1, 134.0, 132.0, 131.2, 130.8, 130.6, 129.9, 128.5, 128.5, 128.0, 117.1, 112.6, 110.6, 76.6, 76.2, 67.8, 65.4, 42.1, 40.8, 40.8, 32.0, 30.6, 30.6, 30.2, 29.8, 29.4, 29.4, 29.3, 29.3, 29.2, 28.6, 27.1, 24.0, 23.9, 23.4, 23.3, 23.3, 23.2, 22.7, 14.3, 14.3, 14.2, 11.5, 11.5, 11.2. MALDI-TOF MS (m/z): calcd for C₉₀H₁₀₉N₃O₈S₅: 1519.7 (M⁺, 100 %). Found: 1519.8 (M⁺, 100 %)

Figure S4. ¹H NMR spectrum of 11 in CDCl₃

Figure S5. ¹³C NMR spectrum of 11 in CDCl₃

Figure S6. ¹H NMR spectrum of TPD(BDT-PyOBn)₂ in CDCl₃

Figure S7. ¹³C NMR spectrum of TPD(BDT-PyOBn)₂ in CDCl₃

Figure S8. Hole mobility of 1, TPD(BDT-PyOBn)₂. (a) transfer characteristics, (b) output characteristics

S10. Reference

1. J. Hou, M. Park, S. Zhang, Y. Yao, L. Chen, J. Li, and Y. Yang, Macromolecules, 2008, 41, 6012

2. WO2011028827A2