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I. Detailed derivations of eqns (10), (13)-(14). 

Starting from the metal concentration profile given by eqns (7)-(8), the spatial integral involved at the 

left hand side of the mass balance eqn (6) can be written in the form1 
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where  1,2 t are functions that depend here on time t according to2 

     
 
 

   
 

   
   
         

c
s,u

o c

o c o
o c

, 21 1el
1 el u, ,

el,in , 1

1 /

r t N
r t r t a t j

r t r t a t r t
r t r t j

Hf t
t G H a t f t a t J

f t F
   



                      

 , (S2) 

                                                          s,u

c

2
2 1 u,

1

/ / 2
N

j
a t r t

j

t t G a t J 



  
      

    
 .  (S3) 

Using eqns (S1) and (S3), eqn (6) then becomes  
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 , which is eqn (11) in the main text. Equation (S4) identifies with eqn 

(10) and after straightforward arrangements, we get 
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where we introduced      a
M Mac t c t c t    . For the situations of interest in this work, the potential 

may be taken constant inside the soft surface layer and zero outside, and the ratio    c o/r t r t  remains 

much larger than unity for steady state metal transport conditions to apply. In turn, using eqn (12) and the 

result ( ) ( )( ) 1
el,in 1af t tb a

-
= -  with      o/t a t r t  , the Taylor expansion of  1 t  up to the leading 

order terms    c/a t r t  and    o c/r t r t  provides 
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To further proceed, it is useful to realize that     0/X t N t N  is equivalently defined by  
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which simply originates from the definition of the Kuwabara unit cell radius     1/3
c T4 / 3r t N t V 

    . In 

addition, the ratio           0 0 0 0
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where we used eqn (S7) and the definition of the initial cell volume fraction 
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with  30 3
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 the initial volume of the soft surface layer, the quantity 
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where we introduced    
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f soft f/ aV V V V   with  30 0

f c4 / 3V r  the 

volume of the Kuwabara unit cell at 0t  . The ratio     0
c 0 c

, ,
/a t r t a r

G G  involved in eqn (S5) may be further 

arranged in the form3 
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where  softV t  is the volume of the surrounding soft surface layer at t. The second equality in eqn (S10) is 

easily verified for dilute dispersions of microorganisms for which the thickness of the soft surface layer d ( 

0-100 nm) is generally much lower than the cell radius  a t  (m scale or above), so that, in turn, changes 

in soft surface layer volume over time can be reasonably discarded, i.e. 
  0

soft soft
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0
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considering the metal membrane transfer time scale defined by 0
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  the resistance associated with this membrane transfer process, we obtain  
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where we used the dimensionless metal affinity  ( ) ( ) *0
s,u s,u M/j j

aA K c  for the j-th type of internalization 

sites Su and the relationship        
u s,uH,uint

j jj jJ k K K  . After substitution of eqns (S9)-(S11) into eqn (S5), we 

finally get 
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which is eqn (13) in the main text. The uptake flux  uJ t  defined by eqn (2), and the metal surface 

concentration    s,k
k=i,u,p

t t    expressed by eqn (1), can be further rearranged according to 
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and    
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respectively. The time derivative  d / dt t  is further provided by 
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Making use of eqns (S13)-(S15), the derivation of both members of eqn (S12) with respect to time t leads to 
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which is eqn (14) in the main text. 

 

II. Detailed derivations of eqns (20)-(23), (25)-(26). 

Combination of eqns (15)-(16) leads to  
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After derivation of eqn (S17) with respect to time, use of eqn (17) and algebraic arrangements, we obtain 
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where the limiting M transport flux  MJ t  is defined by eqn (18). For dilute suspensions of 

microorganisms with  d a t ,  elf t  may be approximated by eqn (19) so that  

 
      1

M

0

ddln d ln

d d d

a tJ t a t d

t t a t


         , (S19) 

where we introduced ( ) 1 1ag eb -= - . In addition the ratio    u M/J t J t  involved in eqn (S18) may be 

written in the form 
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where we used eqn (S13), eqn (18) and the definition of the here time-dependent Bosma number 
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  pertaining to the internalization of M by the j-th type of Su sites. Finally, the 

evaluation of the quantity 
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Substitution of eqns (S19)-(S21) into eqn (S18) provides 
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which corresponds to eqn (20) given in the main text. The general solution  c t  of the differential 

equation (S22) is given by 
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where    /t d a t  , 0  is a constant (independent of time) and  t  is a time-dependent function 

defined by 
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It is straightforward to verify that        
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( )O  indicates that high-order terms in ( )/d a t  are neglected. Using the above expression that connects 
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where we did not report the term that is independent of time because the latter can be subsumed into 0 . 

Using eqn (S25), the expression (S24) for  t  becomes after arrangements  
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Substitution of eqn (S26) into eqn (S23) then leads to 
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At 0t  , eqn (S27) reduces to 
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where we used  M 0 1c t   ,    a
M0 0ac c   ,  0 1a t   ,  0 1X t    and    

0 0
jj

tBn Bn  . In 

order to evaluate the constant 0 , a boundary condition at 0t   is further required. The latter is provided 

by the steady-transport condition expressed by eqn (15) and applied at 0t  , which, after developments, 

provides the following relationship  
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Combining eqns (S28) and (S29), it follows 
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Realizing that      1 1 a
M Ma ac t c t c t      , we then obtain after substitution of eqn (S30) into eqn (S27)  
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which is eqn (21) in the main text.  

In the extremes where e 0k  ,   1a t  ,   1X t    and s,u 1N  , eqn (S31) simplifies into  
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where we have dropped the variable t for simplicity and used      
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M M/ ax c c   

according to 

   21 0A x A B x     ,   (S33) 

with    1
s,u M/ aA K c   and      1 1

u 0 el M,out M/ 0 /B J a f D c A Bn     . The physically-consistent 

solution of eqn (S33) reads as 

     1/221 1 4 / 2x A B A B A
 

       
 

,   (S34) 

which is eqn (25) in the main text.  

Starting from eqn (S31) and following the procedure that leads to eqn (S34), one may show that the initial 
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with    a 0
0 M M0 / ax c c  ,    1 0

0 u 0 el M,out M/ 0B J a f D c      and  10 0
e u u/k J   . This equation 

correctly compares with that we previously obtained for situations where s,u 1N   and cell density is 

independent of time.1  

Let us now analyze the limit of eqn (S31) for e 0k   with no a priori assumption on the time derivative 

of  a t  and  X t . Under such conditions, eqn (S31) reduces to 
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For practical cases where ( )/ 1d a t << , we have        /e e 1 / ( / )t d a t d a t O d a t       , or 

equivalently,      0e 1 / /t d a h t     where we used the definition of the function    
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In turn, it comes that the product     0e 1 /t h t d a      does not depend on time. Subsequently, we can 
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, which provides 
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Substituting eqn (S37) into eqn (S36) and using the equality     0
0e 1 / 1t h t d a        , we obtain 
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Further realizing that          
001 e / e /t th t h t      for 0/ 1d a << ,      01 e / 1t h t   and 

         01 / 1 / /j j
tBn Bn a t h t , eqn (S38) finally simplifies into 
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which is eqn (26) in the main text. 

 

III. Derivations of analytical expressions for  Mc t  and  a
Mc t  in the limits   1a t  , 0   

and/or   1t  . 

As argued in the main text, eqn (20) (or, equivalently, eqn (21)) reduces to    a
M Mac t c t   for cases 

where the rate of metal biouptake is limited by the sole internalisation step (i.e.  1 / 0
j

tBn   or T 0R  ). 

Under such conditions that warrant applicability of the BLM framework, eqn (14) satisfactorily reproduces 

the mass balance equation that we previously derived assuming equilibrium partitioning of M at the 

biointerface.3 The analytical expression for  Mc t , as obtained from the solution of eqn (14) under such 

BLM conditions, is derived elsewhere3 in the limits   1a t  , 0   and/or   1t   in the extremes 
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or high (i.e.    *
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aK c t ). The reader is referred to the Supporting Information of Ref. [3] for 

details. In this section, we are therefore concerned with the derivation of the solution of eqns (3), (5), (14) 

and (20) for dynamic cases where  1 /
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tBn  does not necessarily tend to zero and the affinity of M for the 
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respectively, where the function   is now independent of time. 

 In the high M affinity regime defined here by the inequality    a
Ms,k=i,u,p

j
K c t  or, equivalently,

   a
M s,u/ 1j

ac t A  , eqn (S41) may be approximated by    ed / dc t t k c t    , for which the only 

physical solution reads as    a
M Mac t c t  . The latter implies that equilibrium M partitioning 

systematically applies in the high M affinity regime, a case that we have already treated in a previous 

report.3 The solution of eqn (S40) then identifies with the expression provided for the ‘high affinity case’ in 

Table S1 of the Supporting Information in Ref. [3]. For the sake of completeness, we report in Table SI1 

below these expressions. 

In order to derive the analytical solution of eqns (3), (5), (14) and (20) in the low affinity regime (or 

Henry regime) defined by    a
Ms,k=i,u,p

j
K c t  (or, equivalently,    a

M s,u/ 1j
ac t A  ) with time-

independent cell size and cell density, we follow step-by-step the procedure extensively detailed in Ref. [1] 

where M partitioning dynamics at biointerfaces was examined for   1a t   and   1X t   with explicit 

account of M conductive-diffusion transport albeit in the restrictive case s,u 1N  . After lengthy and tedious 

algebraic developments, we then obtain the expressions of the time-dependent surface and bulk metal 

concentrations detailed in Table SI2 below. It is straightforward to verify that these expressions correctly 

compare with those obtained in Ref. [1] in the limit s,u 1N  , after realizing that the definition of 0
Mc  in 

Ref. [1] is slightly different from that adopted here. Indeed, the initial bulk metal concentration 0
Mc  in Ref. 

[1] was corrected for the initial adsorbed amount  0  of M at the biosurface, so that  0  was not 

explicitly involved in the equation reflecting the mass balance condition. Here, on the contrary,  0  is 

explicitly considered in eqn (6). The reader is referred to the Supporting Information in Ref. [3] for further 

comments on this issue. Finally, we further verify that the expressions reported in Table SI2 considered in 

the BLM limit (  1 / 0jBn   or T 0R  ) appropriately reproduce those derived in Ref. [3] in the low 

affinity case under equilibrium conditions. The reader is referred to our previous reports1-3 for further 

comments on the physical meaning of the time constants o , o , 0
E,L  and 0

E,L  involved in the 

expressions defining  a
Mc t  and  Mc t  in the high and low M affinity regimes. 
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Table SI1. Expressions for the time-dependent surface and bulk metal concentrations (  a
Mc t  and  Mc t , 

respectively) in the limits    a
Ms,k=i,u,p

j
K c t  (corresponding to high affinity of M for the various cell-

surface adsorption sites Si,u,p),   1a t   (or   0a t a ) and   1X t  . These expressions are the solutions of 

eqns (3), (5), (14) and (20) considered in these limits. See text for details. 
 

 

Table SI2. Expressions for the time-dependent surface and bulk metal concentrations (  a
Mc t  and  Mc t , 
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respectively) in the limits    a
Ms,k=i,u,p

j
K c t  (corresponding to low affinity of M for the various cell-surface 

adsorption sites Si,u,p),   1a t   (or   0a t a ) and   1X t  . These expressions are the solutions of eqns (3), 

(5), (14) and (20) considered in these limits. See text for details. 
 

IV. Supporting Figures. 

Figure S1. (A) Time evolution of the growth inhibition function ( )Ψ t at different values of 1/ Bn . Meaning of the 

letters (a,a’) to (g,g’): as in Figure 2B. Solid lines: rigorous solution of eqns (3), (5), (14) and (20). Dotted lines: 
evaluation with discarding M diffusion. (B) Time evolution of the growth inhibition function ( )Ψ t  at different values 

of 1/ Bn  (indicated) with c 15X   (solid lines) and cX   (dotted lines) and account of M diffusion transport. 

Other model parameters in (A) and (B): as in Figure 1. Figure S1B illustrates the different behavior of ( )Ψ t  at long 

exposure time t with or without account of a growth stationary regime. These differences directly follow from the 

definition of ( )Ψ t , i.e. from inspection of the slopes ( )( )d ln / dX t t  in the presence and absence of M within the 

limits cX   (no stationary growth phase) or for finite values of cX . 
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