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I. Detailed derivations of egns (10), (13)-(14).
Starting from the metal concentration profile given by eqns (7)-(8), the spatial integral involved at the

left hand side of the mass balance eqn (6) can be written in the form'
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where € 5 (t) are functions that depend here on time t according to’

Using eqns (S1) and (S3), eqn (6) then becomes
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where o) = I Exop (£,0)dE+ agF(O)] /cyf is a scalar independent of t and the function A, (t) is defined

by A(t)= a('[)2 > Jz(j)]Q . (t), which is eqn (11) in the main text. Equation (S4) identifies with eqn

(10) and after straightforward arrangements, we get
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where we introduced AT (t)= S,Cy (t)—Tgy (t) . For the situations of interest in this work, the potential

may be taken constant inside the soft surface layer and zero outside, and the ratio r,(t)/r,(t) remains

much larger than unity for steady state metal transport conditions to apply. In turn, using eqn (12) and the
result fy;, ()= ﬁa(l—a(t))_l with a(t)=a(t)/r,(t), the Taylor expansion of A;(t) up to the leading
order terms a(t)/r.(t) and ry(t)/r,(t) provides
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To further proceed, it is useful to realize that X =N t /' Ny is equivalently defined by

A (t) = clt {

r(t)’, (S7)

which simply originates from the definition of the Kuwabara unit cell radius I, (t) = [47[N / 3VT] 1/3

addition, the ratio 1y (t)/r,(t) = (ro (t)/ r(? )(r(? / rco)(rco /T, (t)) may be rewritten in the form

o (8)/ 1 (1) = —2—(a(t)+d /ag) X (1), (S8)
where we wused eqn (S7) and the definition of the initial cell volume fraction

(00=47r(r0) No /g = (19 /1 ) . Using eqns (S6)-(S8) and the result G, o = (47)" AVids + (v ) /3



with Vs(())ft =47r[(a0 +d)3 —a(ﬂ/ 3 the initial volume of the soft surface layer, the quantity

X(t)A(t)/G, ,o involved in eqn (S5) becomes for I, (t)/ 1 (t) <<1
0-'c

a(t)-1
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where we introduced p(t)=1+ and V =V / ( VAN +Vf0) with V2 = 47r(r00) /3 the
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volume of the Kuwabara unit cell at t=0. The ratio Ga(t),r (t) / Gao o involved in eqn (S5) may be further

r

arranged in the form’
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where Vg (t) is the volume of the surrounding soft surface layer at t. The second equality in eqn (S10) is

easily verified for dilute dispersions of microorganisms for which the thickness of the soft surface layer d (~

0-100 nm) is generally much lower than the cell radius a(t) (um scale or above), so that, in turn, changes

Vsoft (t) _Vs(())ft

in soft surface layer volume over time can be reasonably discarded, |e
v +V0/ﬂ
soft f a

— 0. Finally,
considering the metal membrane transfer time scale defined by z'g =RG, o/ ag with
0>'c
S i
Ry=1/ KHjuk. ) Pa | the resistance associated with this membrane transfer process, we obtain
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where we used the dimensionless metal affinity ASUL)I = KS(JL)1 / ( ﬂaC;/(l) ) for the j-th type of internalization

(D (D () Afrer substitution of eqns (S9)-(S11) into eqn (S5), we

sites S, and the relationship JE(J) =K KiioKs.

finally get
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which is eqn (13) in the main text. The uptake flux Ju(t) defined by eqn (2), and the metal surface

concentration I'(t)= ) T (t) expressed by eqn (1), can be further rearranged according to
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respectively. The time derivative dI’ (t) /dt is further provided by
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Making use of eqns (S13)-(S15), the derivation of both members of eqn (S12) with respect to time t leads to

(S15)
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which is eqn (14) in the main text.

I1. Detailed derivations of eqns (20)-(23), (25)-(26).
Combination of eqns (15)-(16) leads to
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After derivation of eqn (S17) with respect to time, use of eqn (17) and algebraic arrangements, we obtain
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where the limiting M transport flux JK,[(t) is defined by eqn (18). For dilute suspensions of

microorganisms with d << a(t) , T (t) may be approximated by eqn (19) so that
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where we introduced v = (Eﬁa )71 —1. In addition the ratio J, (t) / J;/[ (t) involved in eqn (S18) may be

written in the form
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Bnt(j) = pertaining to the internalization of M by the j-th type of S, sites. Finally, the
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evaluation of the quantity in eqn (S18) is straightforward

(S21)

Substitution of eqns (S19)-(S21) into eqn (S18) provides
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which corresponds to eqn (20) given in the main text. The general solution Af(t) of the differential
equation (S22) is given by
Ag(t) . i—ketw(t) N w(t) i—ket+;((t) |

a(t)X(t) a(t)X(t)
where ;((t) =yd/ a(t) , @ 1s a constant (independent of time) and a)(t) is a time-dependent function

defined by

(S23)
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It is straightforward to verify that 1/Bnt(j) :E(t)h(t)/Bno(j) with Bn(()j) = Bnt(:j()) and h(t) is the

function given by h(t)= 1-yd /3

_T/a(t)z(l_ﬂj/ao)(1+7d/a(t))+0([d/a(t)]2) where the notation

O( ) indicates that high-order terms in d /a(t) are neglected. Using the above expression that connects

1/ Bnt(j) to 1/ Bno(j) , one can show after integration by parts
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where we did not report the term that is independent of time because the latter can be subsumed into ay .

Using eqn (S25), the expression (S24) for a)(t) becomes after arrangements
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At t=0, eqn (S27) reduces to
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where we used Ty (t=0)=1, AT(0)= A, -t (0), a(t=0)=1, X(t=0)=1 and Bntzo(j) = Bn(()j). In
order to evaluate the constant «y, a boundary condition at t =0 is further required. The latter is provided

by the steady-transport condition expressed by eqn (15) and applied at t=0, which, after developments,

provides the following relationship

(S29)

Combining eqns (S28) and (529), it follows
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Realizing that Ty (t) = S5 1Af(t) + B (t), we then obtain after substitution of eqn (S30) into eqn (S27)
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which is eqn (21) in the main text.

In the extremes where k, — 0, §(t) =1, X (t) =1 and Ny, =1, eqn (S31) simplifies into

k(Y Bn()
= |, (S32)
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where we have dropped the variable t for simplicity and used Bn(()j ) — Bnt(j) = Bn(j) valid for E(t) =1.

Equation (S32) may be rewritten in the form of a second order polynomial equation in X = Ciy /( ,Hac;,[)

according to

A+x[1-A-B]-x*=0, (S33)
with A= Ks(lu) /(ﬂacf{/l) and B= Jl(ll)*ao /[ f1(0) DM,outC;/[:| = A/Bn"). The physically-consistent
solution of eqn (S33) reads as
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which is eqn (25) in the main text.
Starting from eqn (S31) and following the procedure that leads to eqn (S34), one may show that the initial

metal concentrations at the biosurface and in bulk solution are interrelated for Ny, =1 via the expression

Xo = [1 - Al =By 1 —a)o)}+{[As(13 n BO(I—wO)—IT +anl) 1+ Bowo}}l/z /2, (S35)



with Xy =Cjy (0)/(,BaCK2) , By= Jl(ll)*ao /[ fe1(0) DM,OutCK,([)} and o° = ke¢8 /Jz(l) . This equation
correctly compares with that we previously obtained for situations where Ng, =1 and cell density is

independent of time.'

Let us now analyze the limit of eqn (S31) for k., — 0 with no a priori assumption on the time derivative

of @(t) and X (t). Under such conditions, eqn (S31) reduces to
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For practical cases where d /a(t) <<1, we have e_Z(t) = e_yd/a(t) ~1-yd /a(t)+O(d /a(t)) , or

1—}/d/a0

equivalently, o) o (1-yd/ay)/h(t) where we used the definition of the function h(t)= /a0 (V)
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In turn, it comes that the product e”# ) h(t)=1-yd /a, does not depend on time. Subsequently, we can
write d[e‘l ®) xh (t)} /dt =0, which provides
~h(t)dg(t)/dt+dh(t)/dt=0. (S37)

Substituting eqn (S37) into eqn (S36) and using the equality e_Z(t) xh (t) =l-yd/ayg=1- ;(0 , We obtain
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Further realizing that (I—Zo)el(t) /h(t)zel(t)_l0 /h(t) for d/ay<<1, (1—10)el(t)/h(t) ~1 and

1/Bn,\Y) = (1/ Bnt(j)) /(a(t)h(t)), eqn (S38) finally simplifies into
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which is eqn (26) in the main text.

I11. Derivations of analytical expressions for Ty (t) and ci;(t) in the limits a(t)=1, x—0

and/or ¥(t)—>1.
As argued in the main text, eqn (20) (or, equivalently, eqn (21)) reduces to Tyy (t) = ﬂafﬁ (t) for cases

where the rate of metal biouptake is limited by the sole internalisation step (i.e. 1/ Bnt( ) —0 or Ry > 0).

Under such conditions that warrant applicability of the BLM framework, eqn (14) satisfactorily reproduces

the mass balance equation that we previously derived assuming equilibrium partitioning of M at the

biointerface.’> The analytical expression for Eﬂ‘/l (t), as obtained from the solution of eqn (14) under such

BLM conditions, is derived elsewhere® in the limits E(t) =1, u—0 and/or ‘P(t) — 1 in the extremes

where the affinity of M for the various cell-surface adsorption sites S, is low (i.e. KS( f()ZI wp >> /BaC;4 (t))

or high (i.e. KS( f<):iu p << ,Baclt/[ (t)). The reader is referred to the Supporting Information of Ref. [3] for
details. In this section, we are therefore concerned with the derivation of the solution of eqns (3), (5), (14)
and (20) for dynamic cases where 1/ Bnt( ) does not necessarily tend to zero and the affinity of M for the

adsorption S;,, sites is either high or low in the limits ﬁ(t) =1, ¢£—0 and/or ‘I’(t) — 1. For these

situations where cell size and cell density are constant over time, eqns (14) and (20) simplify into

-1
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respectively, where the function o is now independent of time.

(i)

s,k=i,u,p

In the high M affinity regime defined here by the inequality K << Cy (t) or, equivalently,

Ty (t)/ ﬂaAs(jl) >>1, eqn (S41) may be approximated by dAT(t)/dt~—k,AT(t), for which the only

physical solution reads as Ty (t)z ﬂaff/[ (t) The latter implies that equilibrium M partitioning

systematically applies in the high M affinity regime, a case that we have already treated in a previous
report.” The solution of eqn (S40) then identifies with the expression provided for the ‘high affinity case’ in
Table S1 of the Supporting Information in Ref. [3]. For the sake of completeness, we report in Table SI1
below these expressions.

In order to derive the analytical solution of eqns (3), (5), (14) and (20) in the low affinity regime (or

(D)

Henry regime) defined by K_Z; up > i (t) (or, equivalently, Ty (t)/ ﬂaAS(,{-l) <<1) with time-

independent cell size and cell density, we follow step-by-step the procedure extensively detailed in Ref. [1]

where M partitioning dynamics at biointerfaces was examined for E(t) =1 and X (t) =1 with explicit
account of M conductive-diffusion transport albeit in the restrictive case Ny, =1. After lengthy and tedious

algebraic developments, we then obtain the expressions of the time-dependent surface and bulk metal

concentrations detailed in Table SI2 below. It is straightforward to verify that these expressions correctly

compare with those obtained in Ref. [1] in the limit N, =1, after realizing that the definition of C;/([) in

Ref. [1] is slightly different from that adopted here. Indeed, the initial bulk metal concentration CK/([) in Ref.
[1] was corrected for the initial adsorbed amount I'(0) of M at the biosurface, so that T'(0) was not
explicitly involved in the equation reflecting the mass balance condition. Here, on the contrary, F(O) is

explicitly considered in eqn (6). The reader is referred to the Supporting Information in Ref. [3] for further

comments on this issue. Finally, we further verify that the expressions reported in Table SI2 considered in

the BLM limit (1/ Bn(j) — 0 or Ry — 0) appropriately reproduce those derived in Ref. [3] in the low
affinity case under equilibrium conditions. The reader is referred to our previous reports'™ for further

comments on the physical meaning of the time constants 7., 7,, zu; and 72, involved in the

expressions defining C}y (t) and C;/[ (t) in the high and low M affinity regimes.
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High affinity case
KY)

d ‘
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Table SI1. Expressions for the time-dependent surface and bulk metal concentrations ( ¢y (t) and cy (t),

respectively) in the limits Ks( f-():i,up <<cy(t) (corresponding to high affinity of M for the various cell-

surface adsorption sites Si,p), a(t)=1 (or a(t)=ay) and X (t)=1. These expressions are the solutions of
eqns (3), (5), (14) and (20) considered in these limits. See text for details.

Low affinity case (Henry regime
—5 >c§[(r), y case (Henry regime)
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Table SI2. Expressions for the time-dependent surface and bulk metal concentrations (cjy (t) and cy (t),

12



(1)

skeiup >> Cu (1) (corresponding to low affinity of M for the various cell-surface

respectively) in the limits K

adsorption sites S;,p), a(t)=1 (or a(t)=ay) and X (t)=1. These expressions are the solutions of eqns (3),
(5), (14) and (20) considered in these limits. See text for details.

IV. Supporting Figures.
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Figure S1. (A) Time evolution of the growth inhibition function ‘}’(t) at different values of 1/Bn. Meaning of the

letters (a,a’) to (g,g’): as in Figure 2B. Solid lines: rigorous solution of eqns (3), (5), (14) and (20). Dotted lines:
evaluation with discarding M diffusion. (B) Time evolution of the growth inhibition function ‘P(t) at different values

of 1/Bn (indicated) with X; =15 (solid lines) and X, — o (dotted lines) and account of M diffusion transport.
Other model parameters in (A) and (B): as in Figure 1. Figure S1B illustrates the different behavior of ‘I’(t) at long
exposure time t with or without account of a growth stationary regime. These differences directly follow from the

definition of ‘P(t) , i.e. from inspection of the slopes dln(X (t))/ dt in the presence and absence of M within the

limits X, — oo (no stationary growth phase) or for finite values of X.
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