Supplementary information materials

Large polarization and dielectric response in epitaxial SrZrO_{3} films

Hao Tian, ${ }^{a}$ Ai-Jie Mao, ${ }^{*}{ }^{a}$ Hong Jian Zhao, ${ }^{b}$ Yingqi Cui, ${ }^{a}$ Hui Li, ${ }^{c}$ and Xiao-Yu Kuang ${ }^{*} a$
${ }^{a}$ Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
${ }^{b}$ Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
${ }^{c}$ Laboratoire Aimé Cotton, CNRS, Université, Paris-Sud, ENS Cachan, Université Paris-Saclay,

Fig .S1. Calculated phonon-dispersion curves of cubic SrZrO_{3} (a) at LDA level and (b) at GGA level within the density functional perturbation theory (DFPT) ${ }^{1}$ using the PHONOPY ${ }^{2}$ code. The imaginary frequencies (unstable modes) are described as negative numbers.

Table S1. The unstable modes in cubic SrZrO_{3}.

	FE mode Γ_{4}^{-}	AFD mode		Additional mode		
		M_{3}^{+}	R_{4}^{+}	Γ_{5}^{-}	X_{5}^{+}	M_{5}^{-}
LDA	$102 i$	$187 i$	$198 i$	$27 i$	$16 i$	$74 i$
GGA	$74 i$	$165 i$	$175 i$	-	-	$44 i$
GGA-WC ${ }^{3}$	$87 i$	$167 i$	$179 i$	-	-	$50 i$

Table S2. The optimized lattice parameters a, b, c and reduced atomic coordinates x, y, z of orthorhombic Pbnm phase as obtained from LDA and GGA functionals compared with the experimental measurement.

			Coordinates		
	Atoms	Wyck.	x	y	z
LDA	Sr	4 c	0.009	0.537	0.25
$a=5.731 \AA$	Zr	4 a	0	0	0
$b=5.806 \AA$	O 1	4 c	-0.083	-0.024	0.25
$c=8.132 \AA$	O 2	8 d	0.210	0.289	0.044
GGA	Sr	4 c	0.007	0.533	0.25
$a=5.838 \AA$	Zr	4 a	0	0	0
$b=5.903 \AA$	O 1	4 c	-0.077	-0.021	0.25
$c=8.285 \AA$	O 2	8 d	0.213	0.287	0.041
Expt. 4	Sr	4 c	0.004	0.524	0.25
$a=5.796 \AA$	Zr	4 a	0	0	0
$b=5.817 \AA$	O 1	4 c	-0.687	-0.013	0.25
$c=8.205 \AA$	O 2	8 d	0.215	0.284	0.036

Table S3. The optimized lattice parameters a, b, c and reduced atomic coordinates x, y, z of the $P 4 m m, I 4 / m c m, a b-e P b n m, ~ c-e P b n m, \operatorname{Ima} 2, P m c 2_{1}(\mathrm{I})$ and $P m c 2_{1}(\mathrm{II})$ phases in SrZrO_{3} film for given strain. The symmetry of different equilibrium phases are determined by FINDSYM ${ }^{5}$ code.

	Atoms	Wyck.	Coordinates		
			x	y	z
P4mm	$a=3.770 \AA, b=3.770 \AA, c=5.123 \AA$				
(-7.6\%)	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr	1a	0	0	0.164
	Zr	1 b	0.5	0.5	0.613
	O1	1 b	0.5	0.5	-0.03
	O2	2c	0.5	0	0.471
I4/mcm	$a=5.536 \AA, b=5.536 \AA, c=8.460 ~ \AA$				
(-4.0\%)	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr	4 b	0	0.5	0.25
	Zr	4 c	0	0	0
	O1	8 h	0.675	0.175	0
	O2	4 a	0	0	0.25
ab-ePbnm	$a=5.712 \AA, b=8.103 \AA, c=5.786 \AA$				
(-0.7\%)	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr1	2 e	0.009	0.25	0.038
	Sr2	2 e	0.491	0.25	0.538
	Zr1	2b	0.5	0	0
	Zr2	2c	0	0	0.5
	O1	2 e	-0.083	0.25	0.476
	O2	2 e	0.583	0.25	-0.024
	O3	4 f	0.289	0.456	0.289
	O4	4 f	0.789	0.544	0.211

$\begin{aligned} & \text { c-ePbnm } \\ & (+0.5 \%) \end{aligned}$	$a=5.798 \AA, b=8.101 \AA, c=5.798 \AA$				
	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr	4 c	0.465	0.25	0.008
	Zr	4a	0	0	0
	O1	4 c	0.023	0.25	-0.085
	O2	8d	0.786	-0.045	0.714
Ima 2	$a=7.885 \AA, b=6.028 \AA, c=6.028 \AA$				
(+4.5\%)	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr	4b	0.25	0.492	0.731
	Zr	4 a	0	0	0.745
	O1	8 c	0.454	0.255	0.009
	O2	4b	0.25	0.590	0.293
Pmc2 ${ }_{1}$ (I)	$a=7.885 \AA, b=6.028 \AA, c=6.028 \AA$				
$(+4.5 \%)$	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr1	2 b	0.5	0.742	0.030
	Sr 2	2 a	0	0.758	0.028
	Zr	4 c	0.25	0.25	0.014
	O1	2 b	0.5	0.840	0.466
	O2	2a	0	0.660	0.467
	O3	4 c	0.704	0.494	0.251
	O4	4 c	0.796	-0.004	0.749
Pmc2 1_{1} (II)	$a=3.792 \AA, b=6.114 \AA, c=6.114 \AA$				
(+6.0\%)	$\alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$				
	Sr	2 b	0.5	0.179	0.058
	Zr	2a	0	0.717	0.025
	O1	2 b	0.5	0.224	0.462
	O2	2a	0	-0.060	0.273
	O3	2 a	0	0.567	0.692

Fig .S2. The projected (a-e) and total (f) density of states for SZO films with different misfit strain.

According to Fig. 5 and Fig .S2, the total density of states (TDOS) and projected density of states (PDOS) in paraelectric phases clearly show the strong hybridization between Zrd and Op orbitals, which are mainly located from -5 eV to 0 eV (that is, the Fermi level, which is set to zero). In detail, the c-ePbnm and $I 4 / \mathrm{mcm}$ phases exhibit the energy overlap and hybridization peaks between Zrd and O p orbitals (not only in-plane $\mathrm{O}_{1} \mathrm{p}$ orbital but also out-of-plane $\mathrm{O}_{2} \mathrm{p}$ orbital). However, the P 4 mm phase possesses stronger hybridization between Zr d and in-plane O 1 p orbitals (especially at -4 eV), while the orbital hybridization between Zr d and out-of-plane O_{2} p is mainly shifted to about -1.5 eV , which implies highly covalent interaction
between Zr d and in-plane $\mathrm{O}_{1} \mathrm{p}$ orbitals and corresponds to the complete vanishing oxygen octahedral tilting as well as the relative z -displacements of these two atoms. As for the tensile strain, the hybridization between $\mathrm{Zr} d$ and Op orbitals is also enhanced. Due to the lower symmetry induced by in-plane strain, more hybridization peaks emerge between different Op and Zr d orbitals in the distinct $P m c 2_{1}$ phases. According to Table 1 and Fig .S2, the stronger hybridization also corresponds to the enhanced polarization with the increase of misfit strain. Practically, the major hybridization peaks are located from -3.5 eV to -2 eV at 4.5% tensile strain, while a stronger hybridization peak emerges at -4 eV and there are relatively obvious hybridization peaks at the range between -2 eV and 0 eV at 6% tensile strain. In summary, the DOS demonstrates that the hybridization between Zrd and Op orbitals becomes stronger in the presence of strain, which corresponds to the enhanced polarization with the increase of misfit strain.

Fig .S3. Calculated out-of-plane component of static dielectric tensor $\varepsilon_{z z}^{0}$ in the I4/mem phase, as a function of compressive strain.

References

1 M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, Phys. Rev. B, 2006, 73, 045112.

2 A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106.
3 S. Amisi, E. Bousquet, K. Katcho and P. Ghosez, Phys. Rev. B, 2012, 85, 064112.
4 B. J. Kennedy, C. J. Howard and B. C. Chakoumakos, Phys. Rev. B, 1999, 59, 4023.

5 H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr., 2005, 38, 237-238.

