Supplementary Information for

A facile approach to enhancing activity of Ni₂P/SiO₂ catalyst for hydrodechlorination of

chlorobenzene: promoting effect of water or oxygen

Jixiang Chen*, Ti Guo, Kelun Li, Lingmin Sun

Table 1S Properties of Ni₂P/SiO₂ before and after pretreatment

Catalyst	S _{BET} (m²/g)	Pore volume (cm ³ /g)	Mean pore diameter(nm)	Ni content (wt.%)	Ni/P molar ratio	Ni ₂ P particle size(nm) ^a
Ni ₂ P/SiO ₂	294	0.43	5.9	12.7	1.5	12.6
Ni ₂ P/SiO ₂ -513	292	0.42	5.7	13.7	1.6	13.5
Ni ₂ P/SiO ₂ -543	297	0.43	5.8	13.7	1.6	13.8
Ni ₂ P/SiO ₂ -573	288	0.41	5.7	13.7	1.5	14.0
Ni ₂ P/SiO ₂ -673	290	0.42	5.7	13.7	1.5	15.5

^a Calculated by Scherrer equation on the base of Ni₂P(111) reflection (2 θ =40.8°).

Fig. 1S Activity of Ni₂P/SiO₂ treated with a H₂O/H₂ flow.

The treated catalysts are denoted as Ni_2P/SiO_2 -T-c%-t, where T, c% and t represent treatment temperature (K), water concentration in H_2 and treatment time (h).

Fig. 2S XRD patterns of (a)Ni₂P/SiO₂; (b)Ni₂P/SiO₂-513; (c)Ni₂P/SiO₂-543; (d)Ni₂P/SiO₂-573;

(e)Ni₂P/SiO₂-673

Fig. 3S XRD patterns of (a) Ni_2P/SiO_2 ; (b) $Ni_2P/SiO_2-270-0.8\%-1$; (c) $Ni_2P/SiO_2-270-2.0\%-1$; (d) $Ni_2P/SiO_2-270-3.3\%-1$; (e) $Ni_2P/SiO_2-270-0.8\%-3$

The treated catalysts are denoted as Ni_2P/SiO_2 -T-c%-t, where T, c% and t represent treatment temperature (K), water concentration in H₂ and treatment time (h).

Fig. 4S Adsorption-desorption isotherms (A) and pore diameter distributions (B) of Ni_2P/SiO_2 and Ni_2P/SiO_2 -T.

Fig. 5S In situ DRIFTS spectra of re-reduced Ni₂P/SiO₂(O₂) treated with 0.8%H₂O/H₂ at (A) 513

K; (B) 543 K and (C) 673 K

Fig. 6S H₂-TPD profiles of Ni_2P/SiO_2 , Ni_2P/SiO_2 -T and re-reduced $Ni_2P/SiO_2(O_2)$

Fig. 7S XRD patterns of (a) Ni_2P/SiO_2 ; (b) used Ni_2P/SiO_2 -543; (c) Ni_2P/SiO_2 -673 and (d) used Ni_2P/SiO_2 -673

Note: the figure on each pattern is the Ni₂P crystallite size calculated by Scherrer equation on the base of Ni₂P(111) reflection (2θ =40.8°).