Supporting Information for

Flower-like Au/Ni-Al Hydrotalcite with Hierarchical Pore Structure as a Multifunctional Catalyst for Catalytic Oxidation of Alcohol

Yiyun Du, Qiu Jin, Junting Feng*, Na Zhang, Yufei He, Dianqing Li*

State Key Laboratory of Chemical Resource Engineering

Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding author. Tel.: +86 10 64436992 Fax: +86 10 64425385.

E-mail address: fengjt@mail.buct.edu.cn (J. T. Feng), lidq@mail.buct.edu.cn (D.Q. Li)

Fig. S1 Pore size distributions (A) and N2-sorption isotherms (B) of NiAl-LDH-P-36 (a), NiAl-LDH-F-36 (b), NiAl-LDH-F-24 (c) and NiAl-LDH-F-12 (d).

Fig S2. SEM image of MgAI-LDH-P-36.

Fig S3. HRTEM image (a) and AuNPs size distribution of Au/MgAI-LDH-P-36 (b).

Fig S4. HRTEM image (a) and AuNPs size distribution of used Au/NiAl-LDH-P-36 (b).

Fig S5. HRTEM image (a) and AuNPs size distribution of used Au/NiAl-LDH-F-36 (b).

	Ni 2p _{3/2}				Au 4f _{7/2}			
Catalyst	Compound Type	B.E. (eV)	FWHM	Fraction (%)	Compound Type	B.E. (eV)	FWHM	Fraction (%)
NiAl-LDH-F-36	Ni ²⁺	855.88	3.1	100	-	-	-	-
(fresh)	Ni ³⁺	-	-	0	-	-	-	-
NiAl-LDH-F-36	Ni ²⁺	855.88	3.1	35	-	-	-	-
(pretreated)	Ni ³⁺	856.77	2.65	65	-	-	-	-
NiAl-LDH-F-36 (used)	Ni ²⁺	855.88	3.1	38	-	-	-	-
	Ni ³⁺	856.77	2.65	62	-	-	-	-

Table S1 The XPS results of several catalysts.

	Ni ²⁺	856.08	3.1	100	Au ⁰	82.90	1.26	30
Au/NiAl-LDH-F-36 (fresh)	Ni ³⁺	-	-	0	Au ⁺	84.61	2.59	70
					Au ³⁺	-	-	0
	Ni ²⁺	856.08	3.1	59	Au ⁰	82.90	1.26	36
Au/NiAl-LDH-F-36 (pretreated)	Ni ³⁺	856.84	2.65	41	Au ⁺	84.61	2.59	55
					Au ³⁺	85.81	1.19	9
	Ni ²⁺	856.08	3.1	72	Au ⁰	82.90	1.26	33
Au/NiAl-LDH-F-36 (used)	Ni ³⁺	856.84	2.65	28	Au ⁺	84.61	2.59	64
					Au ³⁺	85.81	1.19	3

Au/NiAl-LDH-36 flow	NiAl-LDH-36 flow	Assignment	
1720		ν(C=O)	
1702		ν(C=O)	
	1606	$v(C=C) + \delta(C-H)$	
1598	1596	$v(C=C) + \delta(C-H)$	
1584	1584	$v(C=C) + \delta(C-H)$	
1496	1496	$\delta(C-H) + \nu(C=C)$	
1454	1454	$\delta(C-H) + \nu(C=C)$	
1390		δ(О-Н)	
	1380	δ(О-Н)	
	1370	δ(О-Н)	

Table S2 Vibrational modes assignment in the 1750–1350 cm⁻¹ region at 100 °C.