Supporting Information

Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of the model aromatic ketone acetophenone

Zichun Wang,^a Kyung-Duk Kim,^a Cuifeng Zhou,^a Mengmeng Chen,^a Nobutaka Maeda,^b Zongwen Liu,^a Jeffrey Shi,^a Alfons Baiker,^b Michael Hunger,^c and Jun Huanga^{*,a}

[†] Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia

[‡] Institute for Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zürich, HCI, CH-8093 Zürich, Switzerland

[§] Institute of Chemical Technology, University of Stuttgart, D-70550 Stuttgart, Germany

Small angle XRD patterns

Figure S1. Small-angle XRD patterns of (a) Pt/[A1]MCM-41/50, (b) Pt/[A1]MCM-41/40, (c) Pt/[A1]MCM-41/30, (d) Pt/[A1]MCM-41/20, and (e) Pt/[A1]MCM-41/10.

XRD patterns recorded in the small-angle region ($2\theta = 1.5^{\circ} - 7^{\circ}$) of the Pt/MCM-41 materials with different Si/Al ratios are shown in Fig. S1. The broadening of the *d*(100) reflection at 2.3° for decreasing Si/Al ratios of the Pt/[Al]MCM-41 materials, indicates a distortion of the long-range order of the hexagonal structure of the support materials, and is a consequence of the aluminum incorporation into the silica framework.^{1,2} However, the incorporation of aluminum did not distort the essentially mesoporous structure of the supports.^{3,4}

Figure S2. Pt particle size distribution (histograms) of (a) Pt/[A1]MCM-41/50, (b) Pt/[A1]MCM-41/40, (c) Pt/[A1]MCM-41/30, (d) Pt/[A1]MCM-41/20, and (e) Pt/[A1]MCM-41/10.

Figure S3. STEM image of Pt/[A1]MCM-41/10.

Figure S4. Catalytic conversion of Aph over Pt/[A1]MCM-41 with Si/A1 ratio of 50 (\bigstar), 40 (\blacklozenge), 30 (\blacktriangle), 20 (\blacklozenge), and 10 (\blacksquare). Conditions: Aph (60 mg) in hexane (6 ml) solution, 20 mg Pt/[A1]MCM-41 catalyst added, 1 bar H₂, room temperature, 360 min reaction time.

Figure S5. Aph conversion determined after a reaction time of 2 h (\blacksquare) and population density of surface acid sites (\bigcirc) as a function of Si/Al ratios of Pt/[Al]MCM-41catalysts under study.

The Aph conversion determined after a reaction time of 2 h increased from 61 to 100 % when the population of acidic OH groups increased from 0 to 39.9×10^{-3} BAS/nm². Further increase of the population of acidic OH groups to 70.4×10^{-3} BAS/nm² to a decrease of Aph conversion to 85 %. The observed behaviour is similar to that observed after 20 min Aph conversion shown in Fig. 6a. A possible reason for this behaviour is discussed in Section 3.4 in the manuscript.

Estimation of the Weisz–Prater criterion and its verification on the mass transfer behavior over Pt/[Al]MCM-41 catalysts

In order to check whether the catalytic results were influenced by intraparticular mass transfer, we applied the Weisz-Prater (W–P) criterion.⁵

$$\varphi_{W-P} = \frac{r_a \times R_p^2}{C_s \times D_{eff}} \qquad \text{Eq. 1}$$

where r_a is the initial global reaction rate, R_p is the catalyst particle radius, C_s is the substrate concentration on the catalyst surface, and D_{eff} is the effective diffusivity of the reactants in the pores.

Based on the method by Wilke and Chang,⁶ the diffusivity of a dilute H₂ gas solute in a hexane or acetophenone (Aph) solvent is calculated according to:

$$D_{1,2} = 1.1728 \times 10^{-16} \frac{T \sqrt{\chi M_2}}{\eta_2 V_1^{0.6}}$$
 Eq. 2

where *T* is the reaction temperature (293 K), χ is the solvent association parameter that has been taken as 1 due to the non- or weak polarity of hexane and Aph, M_2 is the molecular weight of solvent, η_2 is the viscosity of the solvent at the reaction temperature (ca. 3.07×10^{-4} Pa·s for hexane and 9.3×10^{-4} Pa·s for Aph), and V_1 is the molar volume of the gas solute at the normal boiling point (0.0286 m³/kmol). The diffusivities of H₂ in hexane and Aph are estimated to be 0.77×10^{-5} cm²/s and 0.3×10^{-5} cm²/s, respectively.

The diffusivity of H_2 in the mixture is estimated using Eq. 3:

$$D_{H_{2}, mixt} = \frac{(D_{H_{2}, hexane} \eta_{hexane}^{0.5})^{x_{hexane}} (D_{H_{2}, Aph} \eta_{Aph}^{0.5})^{x_{Aph}}}{\eta_{mixt}^{0.5}}$$
Eq. 3

where ${}^{D_{H_2, hexane}}$ or ${}^{D_{H_2, Aph}}$ represent the diffusivity of hydrogen in hexane and Aph, respectively, x_{hexane} and x_{Aph} are the mole fraction of hexane and Aph in the mixture, and $\eta_{mixt} = \eta^{x_{hexane}}_{hexane} \times \eta^{x_{Aph}}_{Aph}$. The diffusivity of H₂ in the mixture is estimated to ${}^{D_{H_2, mixt}} = 0.78 \times 10^{-5} \text{ cm}^2/\text{s}$.

Due to the low mole fraction of Aph in hexane, the diffusivity of Aph in the mixture could be estimated as reported previously ⁷, by

$$D_{Aph, mixt} = 4.4 \times 10^{-15} \frac{T}{\eta_{hexane}} (\frac{V_{hexane}}{V_{Aph}})^{1/6} (\frac{L_{hexane}}{L_{Aph}^{vap}})^{1/2}$$
Eq. 4

where V_{hexane} (0.128 m³/kmol) and V_{Aph} (0.121 m³/kmol) are the molar volumes of hexane and acetophenone at the normal boiling point, and L_{hexane}^{vap} (2.89×10⁷ J/kmol) and L_{Aph}^{vap} (4.4×10⁷ J/kmol) are the enthalpies of vaporization at the normal boiling point. The estimated $D_{Aph, mixt} = 3.4 \times 10^{-5}$ cm²/s.

The effective diffusivity of the reactants in the pores of Pt/[A1]MCM-41 (D_{eff}) can be calculated applying Eq. 5

$$D_{eff} = D_b \frac{(1-\lambda)^2}{1+P\lambda}$$
 Eq. 5

where λ is the ratio of the diffusing molecule radius to the average pore radius of the catalyst, and P is a fitting parameter and estimated as 16.3 here. When $D_{H_2, mixt}$ and $D_{Aph, mixt}$ are introduced, the effective diffusivity of the H₂ and Aph can be determined as $D_{eff/H_2} = 0.33 \times 10^{-5}$ cm²/s and $D_{eff/Aph} = 5.1 \times 10^{-9}$ cm²/s.

The initial global reaction rate r_a was determined based on kinetic data taken at 10 % Aph conversion using Eq. 6:

$$r_a = \left(\frac{m_{Aph} \times 10\%}{M_{Aph} \times t}\right) \times \left(\frac{m_{cat}}{\rho_{cat}}\right)^{-1}$$
Eq. 6

where m_{Aph} and M_{Aph} is the mass of Aph and its molecular weight, *t* is the reaction time at 10 % Aph conversion, m_{cat} and ρ_{cat} are the mass of the catalyst and its bulk density, respectively. Based on this, the reaction rates r_a are 4.6 µmol/s·cm³ for Pt/[A1]MCM-41/50, 5.1 µmol/s·cm³ for Pt/[A1]MCM-41/40, 18.3 µmol/s·cm³ for Pt/[A1]MCM-41/30, 22.9 µmol/s·cm³ for Pt/[A1]MCM-41/20, and 7.6 µmol/s·cm³ for Pt/[A1]MCM-41/10.

Finally, the Weisz–Prater criterion could be estimated based on the above calculations. Additionally, C_s for Aph could be estimated according to its mole fraction after 10 % conversion (i.e. 7.5×10^{-5} mol/cm³) and the surface concentration of H₂ is estimated as 1.3×10^{-4} mol/cm³⁸. The resulting W-P criterion ($\varphi_{W-P/Aph} = 0.004 \ll 0.3$, and $\varphi_{W-P/H_2} = 4.3 \times 10^{-6} \ll 0.3$) indicates that the reaction rates were not significantly affected by internal diffusion phenomena.

References

- 1. Wu, J. S.; Stebbins, J. F. J. Non-Cryst. Solids, 2009, 355, 556.
- 2. Xue, X. Y.; Kanzaki, M. Geochim. Cosmochim. Acta, 2008, 72, 2331.
- 3. Luan, Z.; Cheng, C.-F.; Zhou, W.; Klinowski, J. J. Phys. Chem., 1995, 99, 1018.
- 4. Chen, X.; Huang, L.; Ding, G.; Li, Q. Catal. Lett., 1997, 44, 123.
- 5. Zhu, J.; Li, M.; Lu, M.; Zhu, J. Catal. Sci. & Tech., 2013, 3, 737.
- 6. Wilke, C. R.; Chang, P. Aiche J., 1955, 1, 264.
- 7. King, C. J.; Hsueh, L.; Mao, K. W. J. Chem. and Eng. Data, 1965, 10, 348.
- 8. Katayama, T.; Nitta, T. J. Chem. & Eng. Data, 1976, 21, 194.