## Insights into the effects of steam on propane dehydrogenation

## over Pt/Al<sub>2</sub>O<sub>3</sub> catalyst

Yu-Ling Shan<sup>1</sup>, Yi-An Zhu<sup>1</sup>, Zhi-Jun. Sui<sup>1,\*</sup>, De Chen<sup>2</sup> and Xing-Gui Zhou<sup>1</sup>

 <sup>1</sup>State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
 <sup>2</sup>Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
 \*Corresponding author:zhjsui@ecust.edu.cn



Fig. S1. TEM image of prepared  $Pt/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst, the in-set shows the particle size distribution of Pt.



Fig. S2. Transition states structures of propane dehydrogenation at a) clean Pt(111) surface, OH\*Pt(111) surface and O\*Pt(111) surface.

| species          | Adsorption Sites | $	riangle E_{ m ads}$ (eV) |
|------------------|------------------|----------------------------|
| Hydroxyl (-OH)   | Atop             | -2.25                      |
|                  | Bridge           | -2.34                      |
| Oxygen atom (-O) | Atop             | -3.13                      |
|                  | Bridge           | -4.40                      |
|                  | Fcc              | -4.41                      |

Table S1 Adsorption energies and geometries of hydroxyl and oxygen atom on Pt(111) surface