Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Hyperbranched Polyethylene-Supported L-Proline: A Highly Selective and Recyclable

Organocatalyst for Asymmetric Aldol Reactions

Song Wang,^a Pingwei Liu,^a Wen-Jun Wang,^{*,a,b} Zhiguo Zhang,^b and Bo-Geng Li^a

^a State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering,

Zhejiang University, Hangzhou, China, 310027

^b Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and

Biological Engineering, Zhejiang University, Hangzhou, China, 310027

Fax: (+86)-571-87952772; e-mail: wenjunwang@zju.edu.cn (W.-J. Wang)

Figure S1 ¹H NMR (400 MHz, CD₃OD) spectrum of O-acryloyl-trans-4-hydroxy-L-proline hydrochloride (2) : $\delta = 2.44-2.68$ ppm (m, 2H, b), 3.52-3.73 ppm (m, 2H, d), 4.60-4.64 (m, 1H, a), 5.52 (br s, 1H, c), 5.96-5.99 (m, 1H, f), 6.17/6.20/6.21/6.24 (s, 1H, f), 6.46/6.50 (s, 1H, e), * represents the peak of the solvent.

Figure S2 13 C NMR (100 MHz, CD₃OD) spectrum of O-acryloyl-trans-4-hydroxy-L-proline hydrochloride (2)

ESI-MS: calculated for $C_8H_{13}NO_4^+$ [*M*+H⁺]: 186.1, found: 185.9.

Figure S3 ¹H NMR (400 MHz, CDCl₃) spectrum of N-tert-butyloxycarbonyl- O-acryloyl-trans-4-hydroxy-L-proline (**3**): $\delta = 1.43/1.46$ (s, 9H, h), 2.27-2.51 (m, 2H, b), 3.60-3.73 (m, 2H, d), 4.37/4.48 (t, 1H, a), 5.35 (br s, 1H, c), 5.86-5.89 (m, 1H, f), 6.07/6.09/6.11/6.14 (s, 1H, f), 6.40/6.44 (s, 1H, e), * represents the peak of the solvent.

Figure S4 ¹³C NMR (100 MHz, CDCl₃) spectrum of N-tert-butyloxycarbonyl- O-acryloyl-trans-4-hydroxy-L-proline (**3**) and tertiary butanol.

ESI-MS: calculated for C₁₃H₂₀NO₆ [*M*+H⁺]: 286.1, found: 285.9.

Figure S5 ¹H NMR (400 MHz, CDCl₃) spectrum of tert-butyl-N-tert-Butyloxycarbonyl-O-acryloyl-trans-4-hydroxy-L-proline ester (**4**): $\delta = 1.43$ (t, 18H, g), 2.13-2.44 (m, 2H, b), 3.51-3.73 (m, 2H, d), 4.20-4.30 (m, 1H, a), 5.31 (br s, 1H, c), 5.82-5.86 (m, 1H, f), 6.04/6.07/6.08/6.11 (s, 1H, f), 6.36/6.41 (s, 1H, e).

Figure S6 13 C NMR (100 MHz, CDCl₃) spectrum of tert-butyl-N-tert-Butyloxycarbonyl-O-acryloyl-trans-4-hydroxy-L-proline ester (4)

ESI-MS: calculated for C₁₇H₂₈NO₆ [*M*+H⁺]: 342.2, found: 342.0.

Figure S7 ¹H NMR (400 MHz, CDCl₃) data of the products from the aldol reaction of cyclohexanone and p-nitrobenzaldehyde (p-NBA) in Run 9 with de-protected P3 (DP3) as catalyst, DP3 (60 mg, 0.03 mmol L-proline), p-NBA (0.1 mmol, 15 mg) cyclohexanone (0.5 mmol, 47 mg), and THF (0.5 mL, containing 5.4 μ L water). Figure S7 (a) was used to calculate the conversion of p-NBA (conversion of p-NBA = $\frac{1}{2}S_2/(S_1 + \frac{1}{2}S_2)$, S1 and S2 are integral area of peak 1 and 2, respectively; Figure S7 (b) was used to calculate the anti/syn value of the product mixture.

Figure S8 Chiral HPLC results of the products from the aldol reaction of p-NBA and cyclohexanone in Run 9 with DP3 as catalyst. The value of ee was calculated based on the integrations of the two peaks from the anti-products.

Table S1 Determination of element contents in run P3 sample

Element	N (%)	C(%)	H(%)
Element analysis ^a	0.87	81.39	13.42
¹ H NMR ^b	0.66	81.45	13.34

^a determined by an elemental analyzer; ^b estimated from ¹H NMR spectrum using the following equations: $C(\%) = \frac{2 \times 100 + 17 \times F_4}{mw_E \times 100 + mw_4 \times F_4} \times a_{rC} \times 100$; $H(\%) = \frac{4 \times 100 + 27 \times F_4}{mw_E \times 100 + mw_4 \times F_4} \times a_{rH} \times 100$; and

 $N(\%) = \frac{F_4}{mw_E \times 100 + mw_4 \times F_4} \times a_{rN} \times 100 , \text{ where } F_4 \pmod{3} \text{ is mole ratio of incorporated}$

comonomer **4** in run P3 sample; mw_E and mw_4 are molecular weights of ethylene and comonomer **4**, respectively; and a_{rC} , a_{rH} , and a_{rN} are atomic weights for carbon, hydrogen, and nitrogen, respectively.

Figure S9 IR spectra of run P3 sample before and after de-protection treatment (DP3)

Figure S10 ¹H NMR (400 MHz, $CDCl_3$) data of the products from the Aldol reaction in Run 16 (Table 4) with de-protected P4 (DP4) as catalyst

Figure S11 ¹H NMR (400 MHz, $CDCl_3$) data of the products from the Aldol reaction in Run 17 (Table 4) with de-protected P4 (DP4) as catalyst.

Figure S12 ¹H NMR (400 MHz, CDCl₃) data of the products from the Aldol reaction in Run 18 (Table 4) with de-protected P4 (DP4) as catalyst.

Figure S13 ¹H NMR (400 MHz, CDCl₃) data of the products from the Aldol reaction in Run 19 (Table 4) with de-protected P4 (DP4) as catalyst.

Figure S14 ¹H NMR (400 MHz, CDCl₃) data of the products from the Aldol reaction in Run 20 (Table 4) with de-protected P4 (DP4) as catalyst.