Supporting Information

Kinetic and *in-situ* **FTIR study of CO methanation on a Rh/Al2O³ catalyst.**

*Mauricio Escobara,c , Francisco Gracia^b , Alejandro Karelovic^a , Romel Jiméneza**

^a Department of Chemical Engineering, Universidad de Concepción, Chile

^b Department of Chemical Engineering and Biotechnology, Universidad de Chile, Chile

^c Current address: Technological Development Unit (UDT) of the Universidad de

Concepcion, Parque Industrial Coronel, Coronel, Chile

* Corresponding author: romeljimenez@udec.cl

S1. Effect of CO pressure on forward turnover formation rate of CH₄.

Figure S1. Forward turnover formation rate of CH_4 on Rh/Al_2O_3 as a function of CO pressures at 300°C. P_{H2} (0 – 22.5 kPa), P_{H2}: (\bullet) 5.8 kPa, (\bullet) 11.0 kPa, (\Box) 16.0 kPa, (\Box) 21.5 kPa. Space velocity: $4 - 10$ cm³·s⁻¹·g_{cat}⁻¹.

S2. Derivation for Langmuir-Hinshelwood rate expressions.

The symbols \iff , \to and \iff represent the quasi-equilibrated, irreversible and reversible steps, respectively.

The CO and H_2 adsorptions have been assumed as quasi-equilibrated steps Scheme 1, steps 1 and 2), therefore the CO* and H* are calculated by Equations S1 and S2, where θ * represents the fractional concentration of vacancies.

$$
\theta_{CO*} = K_{CO} \cdot P_{CO} \cdot \theta_*
$$
 (Eq.S1)

$$
\theta_{H*} = K_{H2}^{0.5} \cdot P_{H2}^{0.5} \cdot \theta_*
$$
 (Eq.S2)

 K_{H2} and K_{CO} represent the equilibrium constants for the molecular CO adsorption and the dissociative H_2 adsorption, respectively.

S.2.1. Unassisted C-O bond dissociation mechanism.

Scheme 1

Since the reaction rates for the steps 1.3 and 1.8 are equal at steady state condition, the methane formation rate can be calculated as:

$$
r_{CH4} = k_{1.3} \cdot \theta_{CO} * \cdot \theta * \tag{Eq.S3}
$$

For a site balance with vacancy, H* and CO* as MASI,

$$
\theta_* = \frac{1}{(1 + K_{H2}^{0.5} P_{H2}^{0.5} + K_{CO} P_{CO})}
$$

(Eq.S4)

Substituting Eqs.S1, S2 and S4 into Eq.S3 leads to Eq.5 in the manuscript.

$$
r_{CH4} = \frac{kP_{CO}}{(1 + K_{H2}^{0.5}P_{H2}^{0.5} + K_{CO}P_{CO})^2}
$$
\n(5)

For a site balance with vacancy and CO* as MASI,

$$
\theta_* = \frac{1}{(1 + K_{CO}P_{CO})}
$$

(Eq.S5)

Substituting Eqs.S1, S2 and S5 into Eq.S3 leads to Eq.6 in the manuscript.

$$
r_{CH4} = \frac{kP_{CO}}{(1 + K_{CO}P_{CO})^2}
$$
\n(6)

S.2.2. C-O bond dissociates after first H addition.*

Scheme 2.

2.1) CO + $* \rightleftharpoons C0^*$ 2.2) $H_2 + 2^* \rightleftharpoons 2H^*$ 2.3) $CO^* + H^* \rightarrow C^* + OH^*$ 2.4) C^* + H^{*} \rightarrow CH^{*} + ^{*} 2.5) CH^{*} + H^{*} \rightarrow CH₂^{*} + ^{*} 2.6) $CH_2^* + H^* \rightarrow CH_3^* + ^*$ 2.7) $CH_3^* + H^* \rightarrow CH_4^* +$ 2.8) $CH_4^* \rightarrow CH_4 + ^*$ 2.9) OH* + H* \rightarrow H₂O + 2* 2.10) OH* + $CO^* \rightarrow CO_2 + H^* +$

At steady state conditions Eq.S6 determines the methane formation rate:

$$
r_{CH4} = k_{2.3} \cdot \theta_{CO} * \cdot \theta_{H*}
$$
 (Eq.S6)

In-situ FTIR measurements are consistent with the site balance represented by Eq.S5; Therefore, substituting Eqs.S1, S2 and S5 into Eq.S6 leads to Eq.7 in the manuscript.

$$
r_{CH4} = \frac{k_{2.3} K_{CO} K_{H2}^{0.5} P_{CO} P_{H2}^{0.5}}{\left(1 + K_{CO} P_{CO}\right)^2} = \frac{\alpha_2 \cdot P_{CO} P_{H2}^{0.5}}{\left(1 + K_{CO} P_{CO}\right)^2}
$$
(7)

S.2.3. C-O bond dissociates after the second H addition.*

Scheme 3.

3.1) CO + * ~~...~~ CO* CO*
\n3.2) H₂ + 2* ~~...~~ 2H*
\n3.3) CO* + H* ~~...~~ HCO* + *
\n3.4) HCO* + H*
$$
\rightarrow
$$
 CH* + OH*
\n3.5) CH* + H* \rightarrow CH₂* + *
\n3.6) CH₂* + H* \rightarrow CH₃* + *
\n3.7) CH₃* + H* \rightarrow CH₄* + *
\n3.8) CH₄* \rightarrow CH₄* + *
\n3.9) OH* + H* \rightarrow H₂O + 2*
\n3.10) OH* + CO* \rightarrow CO₂ + H* + *

At steady state conditions Eq.S7 represents the methane formation rate:

$$
r_{CH4} = k_{3.4} \cdot \theta_{HCO} * \cdot \theta_{H*}
$$
 (Eq.S7)

Substituting Eqs.S1, S2 and S5 into Eq.S7 leads to Eq.8 in the manuscript.

$$
r_{CH4} = \frac{k_{3.4} K_{HCO} K_{CO} K_{H2} P_{CO} P_{H2}}{\left(1 + K_{CO} P_{CO}\right)^2} = \frac{\alpha_3 \cdot P_{CO} P_{H2}}{\left(1 + K_{CO} P_{CO}\right)^2}
$$
(8)

 K_{HCO} represents the equilibrium constants for the surface reaction of $HCO*$ formation.

S.2.4. The CO disproportionation mechanism.

This could be considered as a particular case of the direct (unassisted) CO dissociation mechanism (Scheme 1), in which the reaction rate is determined by the combination of two CO^* species to form C^* and CO_2 .

Scheme 4.

At steady state conditions, the methane formation rate is defined by the rate of C^* formation in the disproportionation step (4.3):

$$
r_{CH4} = k_{4.3} \cdot \theta_{CO}^2 \tag{Eq. S8}
$$

Substituting Eqs.S1 and S5 into Eq.S8 leads to Eq.S9.

$$
r_{CH4} = \frac{k_{4.3} \cdot P_{CO}^2}{\left(1 + K_{CO} P_{CO}\right)^2}
$$
 (Eq.S9)

This kinetic model does not properly represent the kinetic data reported in the manuscript because neither contain the positive effect of H_2 pressure on reaction rate nor is consistent with the negative effect of CO pressure on methane formation rate.