Supporting Information

Kinetic and *in-situ* FTIR study of CO methanation on a Rh/Al₂O₃ catalyst.

Mauricio Escobar^{a,c}, Francisco Gracia^b, Alejandro Karelovic^a, Romel Jiménez^{a*}

^a Department of Chemical Engineering, Universidad de Concepción, Chile

^b Department of Chemical Engineering and Biotechnology, Universidad de Chile, Chile

^c Current address: Technological Development Unit (UDT) of the Universidad de

Concepcion, Parque Industrial Coronel, Coronel, Chile

* Corresponding author: <u>romeljimenez@udec.cl</u>

S1. Effect of CO pressure on forward turnover formation rate of CH₄.

Figure S1. Forward turnover formation rate of CH₄ on Rh/Al₂O₃ as a function of CO pressures at 300°C. P_{H2} (0 – 22.5 kPa), P_{H2}: (\blacklozenge) 5.8 kPa, (\bullet) 11.0 kPa, (\Box) 16.0 kPa, (\blacksquare) 21.5 kPa. Space velocity: 4 – 10 cm³·s⁻¹·g_{cat}⁻¹.

S2. Derivation for Langmuir-Hinshelwood rate expressions.

The symbols \iff , \rightarrow and \iff represent the quasi-equilibrated, irreversible and reversible steps, respectively.

The CO and H₂ adsorptions have been assumed as quasi-equilibrated steps Scheme 1, steps 1 and 2), therefore the CO* and H* are calculated by Equations S1 and S2, where θ_* represents the fractional concentration of vacancies.

$$\theta_{CO*} = K_{CO} \cdot P_{CO} \cdot \theta_{*}$$
(Eq.S1)
$$\theta_{H*} = K_{H2}^{0.5} \cdot P_{H2}^{0.5} \cdot \theta_{*}$$
(Eq.S2)

 K_{H2} and K_{CO} represent the equilibrium constants for the molecular CO adsorption and the dissociative H_2 adsorption, respectively.

S.2.1. Unassisted C-O bond dissociation mechanism.

Scl	heme	1

1.1)	CO + * 🕶 CO*
1.2)	$H_2 + 2^* \iff 2H^*$
1.3)	$CO^* + * \rightarrow C^* + O^*$
1.4)	$C^* + H^* \rightarrow CH^* + *$
1.5)	$\mathrm{CH}^* \ + \ \mathrm{H}^* \ \rightarrow \ \mathrm{CH}_2^* \ + \ *$
1.6)	$CH_2^* + H^* \rightarrow CH_3^* + *$
1.7)	$\mathrm{CH}_3{}^* \ + \ \mathrm{H}^* \ \rightarrow \ \mathrm{CH}_4{}^* \ + \ *$
1.8)	$CH_4^* \rightarrow CH_4 + *$
1.9)	$O^* + 2H^* \rightarrow H_2O + 3^*$
1.10)	$O^* + CO^* \rightarrow CO_2 + 2^*$

Since the reaction rates for the steps 1.3 and 1.8 are equal at steady state condition, the methane formation rate can be calculated as:

$$r_{CH4} = k_{1.3} \cdot \theta_{CO*} \cdot \theta_* \tag{Eq.S3}$$

For a site balance with vacancy, H* and CO* as MASI,

$$\theta_* = \frac{1}{(1 + K_{H2}^{0.5} P_{H2}^{0.5} + K_{CO} P_{CO})}$$

(Eq.S4)

Substituting Eqs.S1, S2 and S4 into Eq.S3 leads to Eq.5 in the manuscript.

$$r_{CH4} = \frac{kP_{CO}}{\left(1 + K_{H2}^{0.5}P_{H2}^{0.5} + K_{CO}P_{CO}\right)^2}$$
(5)

For a site balance with vacancy and CO* as MASI,

$$\theta_* = \frac{1}{(1 + K_{CO}P_{CO})}$$

(Eq.S5)

Substituting Eqs.S1, S2 and S5 into Eq.S3 leads to Eq.6 in the manuscript.

$$r_{CH4} = \frac{kP_{CO}}{\left(1 + K_{CO}P_{CO}\right)^2} \tag{6}$$

S.2.2. C-O bond dissociates after first H* addition.

Scheme 2.

2.1)	CO + * ← CO*
2.2)	$H_2 + 2^* \iff 2H^*$
2.3)	$CO^* + H^* \rightarrow C^* + OH^*$
2.4)	$C^* + H^* \rightarrow CH^* + *$
2.5)	$CH^* + H^* \rightarrow CH_2^* + *$
2.6)	$CH_2^* + H^* \rightarrow CH_3^* + *$
2.7)	$CH_3^* + H^* \rightarrow CH_4^* + *$
2.8)	$CH_4^* \rightarrow CH_4 + *$
2.9)	$OH^* + H^* \rightarrow H_2O + 2^*$
2.10) C	$H^* + CO^* \rightarrow CO_2 + H^* + *$

At steady state conditions Eq.S6 determines the methane formation rate:

$$r_{CH4} = k_{2.3} \cdot \theta_{CO*} \cdot \theta_{H*} \tag{Eq.S6}$$

In-situ FTIR measurements are consistent with the site balance represented by Eq.S5; Therefore, substituting Eqs.S1, S2 and S5 into Eq.S6 leads to Eq.7 in the manuscript.

$$r_{CH4} = \frac{k_{2.3}K_{CO}K_{H2}^{0.5}P_{CO}P_{H2}^{0.5}}{\left(1 + K_{CO}P_{CO}\right)^2} = \frac{\propto {}_2 \cdot P_{CO}P_{H2}^{0.5}}{\left(1 + K_{CO}P_{CO}\right)^2}$$
(7)

S.2.3. C-O bond dissociates after the second H* addition.

Scheme 3.

3.1) CO + *
$$\longleftrightarrow$$
 CO*
3.2) H₂ + 2* \rightleftharpoons 2H*
3.3) CO* + H* \rightleftharpoons HCO* + *
3.4) HCO* + H* \rightarrow CH* + OH*
3.5) CH* + H* \rightarrow CH₂* + *
3.6) CH₂* + H* \rightarrow CH₃* + *
3.7) CH₃* + H* \rightarrow CH₄* + *
3.8) CH₄* \rightarrow CH₄ + *
3.9) OH* + H* \rightarrow H₂O + 2*
3.10) OH* + CO* \rightarrow CO₂ + H* + *

At steady state conditions Eq.S7 represents the methane formation rate:

$$r_{CH4} = k_{3.4} \cdot \theta_{HCO*} \cdot \theta_{H*} \tag{Eq.S7}$$

Substituting Eqs.S1, S2 and S5 into Eq.S7 leads to Eq.8 in the manuscript.

$$r_{CH4} = \frac{k_{3.4}K_{HC0}K_{C0}K_{H2}P_{C0}P_{H2}}{\left(1 + K_{C0}P_{C0}\right)^2} = \frac{\propto {}_{3} \cdot P_{C0}P_{H2}}{\left(1 + K_{C0}P_{C0}\right)^2}$$
(8)

K_{HCO} represents the equilibrium constants for the surface reaction of HCO* formation.

S.2.4. The CO disproportionation mechanism.

This could be considered as a particular case of the direct (unassisted) CO dissociation mechanism (Scheme 1), in which the reaction rate is determined by the combination of two CO* species to form C* and CO_2 .

Scheme 4.

4.1)	CO + * < ⊂O*
4.2)	H ₂ + 2* ← 2H*
4.3)	$CO^* + CO^* \rightarrow C^* + CO_2^*$
4.4)	$C^* + H^* \rightarrow CH^* + *$
4.5)	$CH^* + H^* \rightarrow CH_2^* + *$
4.6)	$CH_2^* + H^* \rightarrow CH_3^* + *$
4.7)	$CH_3^* + H^* \rightarrow CH_4^* + *$
4.8)	$CH_4^* \rightarrow CH_4 + *$
4.9)	$\mathrm{CO}_2^* \rightarrow \mathrm{CO}_2 + 2^*$

At steady state conditions, the methane formation rate is defined by the rate of C^* formation in the disproportionation step (4.3):

$$r_{CH4} = k_{4.3} \cdot \theta_{CO*}^2$$
(Eq.S8)

Substituting Eqs.S1 and S5 into Eq.S8 leads to Eq.S9.

$$r_{CH4} = \frac{k_{4.3} \cdot P_{C0}^2}{\left(1 + K_{C0} P_{C0}\right)^2}$$
(Eq.S9)

This kinetic model does not properly represent the kinetic data reported in the manuscript because neither contain the positive effect of H_2 pressure on reaction rate nor is consistent with the negative effect of CO pressure on methane formation rate.