## Supplementary material

## Catalytic Behaviors of Combined Oxides Derived from Mg/Al<sub>x</sub>Fe<sub>1-x</sub>-Cl Layered Double Hydroxides for H<sub>2</sub>S Selective Oxidation

Xin Zhang<sup>1</sup>, Zhuo Wang<sup>1,2</sup>, Yuyin Tang<sup>1,3</sup>, Nanli Qiao<sup>1</sup>, Yang Li<sup>1</sup>, Siqiu Qu<sup>4</sup>,

Zhengping Hao1\*

<sup>1</sup>Department of Environmental Nano-materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China <sup>2</sup>Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China. <sup>3</sup>School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China

<sup>4</sup>Center of Research & Development, Shandong Sunway Petrochemical Engineering Share Co., Ltd, Beijing 100015, P. R. China

This Supporting Information includes:

## Table S1

| Sample                                                | Mg (At | Cl    | Na    | Al (At | Fe (At | S      | Fe/(Al+Fe)    |
|-------------------------------------------------------|--------|-------|-------|--------|--------|--------|---------------|
|                                                       | %)     | (At%) | (At%) | %)     | %)     | (At %) | (molar ratio) |
| Mg <sub>2</sub> Al <sub>0.8</sub> Fe <sub>0.2</sub> O | 16.4   | 0.5   | 0.9   | 9.6    | 1.2    | -      | 0.1           |
| $Mg_2Al_{0.6}Fe_{0.4}O$                               | 15.6   | 0.4   | 1.3   | 8.8    | 2.3    | -      | 0.2           |
| $Mg_2Al_{0.4}Fe_{0.6}O$                               | 15.8   | 0.5   | 4.5   | 5.7    | 2.9    | -      | 0.3           |
| $Mg_2Al_{0.2}Fe_{0.8}O$                               | 16.9   | 0.2   | 0.5   | 4.1    | 8.3    | -      | 0.7           |
| Used                                                  | 16.2   | 0.1   | 0.8   | 0 1    | 1.0    | 4.0    | 0.2           |
| $Mg_2Al_{0.6}Fe_{0.4}O$                               | 10.2   | 0.1   | 0.8   | 0.1    | 1.9    | 4.9    | 0.2           |

Table S1 XPS analysis of prepared catalysts



Fig. S1 TG patterns of Mg<sub>2</sub>Al<sub>x</sub>Fe<sub>1-x</sub>-LDH



Fig. S2 Nitrogen adsorption/desorption isotherms and pore size distribution calculated from the desorption branch of  $Mg_2Al_xFe_{1-x}O$  catalysts



Fig. S3 Uv-vis-DRS patterns of Mg<sub>2</sub>Al<sub>x</sub>Fe<sub>1-x</sub>O catalysts



Fig. S4 Raman patterns of Mg<sub>2</sub>Al<sub>x</sub>Fe<sub>1-x</sub>O catalysts



Fig. S5 O-XPS patterns of  $Mg_2Al_{0.6}Fe_{0.4}O$  catalysts



Fig.S6 Raman patterns of fresh and used  $Mg_2Al_{0.6}Fe_{0.4}O$  catalyst



Fig.S7 EPR patterns of fresh and used  $Mg_2Al_{0.6}Fe_{0.4}O$  catalyst



Fig. S8 FTIR patterns of  $Mg_2Al_{0.6}Fe_{0.4}O$  catalysts



Fig. S9 S 2p XPS spectrum of  $Mg_2Al_{0.6}Fe_{0.4}O$  catalysts