Supplementary Information for:

Relationship between the molecular structure of V_2O_5/TiO_2 catalysts

and the reactivity of SO₂ oxidation

Authors: Peidong Ji^a, Xiang Gao^{a, *}, Xuesen Du^{a, b}, Chenghang Zheng^b, Zhongyang

Luo^a, Kefa Cen^a

Affiliations: ^a State Key Laboratory of Clean Energy Utilization, Zhejiang

University, Hangzhou 310027, China

^b Key Laboratory of Low-grade Energy Utilization Technologies & Systems of

Ministry of Education of China, College of Power Engineering, Chongqing University,

Chongqing 400044, China

Xiang Gao * (corresponding author),

Address: State Key Laboratory of Clean Energy Utilization, Zhejiang University,

No.38 Zheda Road, Hangzhou, Zhejiang PRC 310027 P.R., China.

Tel: +86-13505711887

Fax: +86-571-87951616

Email: xgao1@zju.edu.cn

The temperature dependence of the oxidation of SO₂ to SO₃ was investigated as shown in Fig. S1. The SO₂ oxidation reaction rates over V₂O₅/TiO₂ catalysts were calculated in the temperature range 300-400 °C, where the SO₂ conversion is less than 20%. The data were analyzed by assuming a simplified plug-flow reactor model and a rate equation first order in SO₂ and zero order in O₂. According to the pseudo-firstorder rate constant of SO2 oxidation, k_{SO_2} , can be expressed as follows ¹:

$$k_{SO_2} = -\frac{Q}{V_c} \frac{T + 273}{273} \ln(1 - X_{SO_2})$$

where Q is the total gas flow rate (ml/s (NTP)), V_c is the total catalyst volume (ml), and X_{SO_2} is the SO₂ conversion.

Fig. S1. SO₂ conversion of V_2O_5/TiO_2 catalysts as a function of vanadia loading and reaction temperature.

Fig. S2. Arrhenius plots of the SO₂ oxidation reaction rates of V_2O_5/TiO_2 catalysts with different vanadia loading.

Fig. S3. Activation Energy of SO $_2$ oxidation of V $_2O_5/TiO_2$ catalysts with different vanadia loading.

References:

1. J. Svachula, L. J. Alemany, N. Ferlazzo, P. Forzatti, E. Tronconi and F. Bregani, *Ind. Eng. Chem. Res.*, 1993, 32, 826-834