Nickel N-heterocyclic carbene-catalyzed cross-coupling reaction of aryl aldehydes with organozinc reagents to produce aryl ketones

Cheng Jin^a Lijun Gu *b,c and Minglong Yuan *c

^a New United Group Company Limited, Changzhou, Jiangsu, 213166, China; ^b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; ^c Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, Yunnan, 650500, China

Supporting Information

List of Contents

(A) Materials and equipment

- (B) Typical experimental procedure
- (C) Screening optimal conditions
- (D) Deuterium-labeling experiment
- (E) Analytical data
- (F) References
- (G) Spectra

(A) Materials and equipment

Reagents were obtained commercially and used as received. Solvents were purified and dried by standard methods. Organozinc reagents (0.5M in THF) were purchased from Beijing InnoChem Science & Technology Co., Ltd. All title products were characterized by Infrared (IR), MS, ¹H NMR, ¹³C NMR and High Resolution mass spectrometer (HRMS). IR spectra were reported in frequency of the absorption (cm⁻¹). ¹H NMR spectra were recorded on 400 MHz in CDCl₃, and ¹³C NMR spectra were recorded on 100 MHz in CDCl₃ using tetramethylsilane (TMS) as an internal standard. Chemical shift values (δ) are given in ppm. Coupling constants (*J*) were measured in Hz. Mass spectra were obtained with ionization voltages of 70 eV. HRMS spectra were obtained by ESI on a TOF mass. 200-300 mesh silica gel was used for column chromatography.

(B) Typical experimental procedure

Typical Experimental Procedure for the Synthesis of compounds 3:

A 10 mL oven-dried Schlenk tube was charged with 1 (0.3 mmol), 2 (0.3 mmol), 5d (0.45 mmol), $MgCl_2$ (0.3 mmol), Ni(cod)₂ (8 mol %), IPr (10 mol %), 1,4-dioxane (1.5 mL), THF (1.5 mL). Then the tube was charged with argon, and was stirred at 30 °C for about 8 h. After the reaction was finished, the reaction mixture was diluted in 5 mL EtOAc. The solution was filtered through a celite pad and washed with 15-20 mL of EtOAc. The organic portion was washed with a saturated solution of NH₄Cl (8 mL×2), bine (8 mL×2), dried (Na₂SO₄) and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to provide the desired products **3**.

(C) Screening optimal conditions

	Ph-CHO +	e PhZnBr <u>hy</u> i Li	Solvent, MgCl ₂ drogen acceptor gand, Ni source	O Ph Ph	+ Ph O Bn	
	1a	2a		3aa	4a	
Entry	Ni source	Solvent	hydrogen	Ligand	Yield ^{b} (%)	Yield ^b (%)
			acceptor		(3aa)	(4a)
1	$Ni(cod)_2$	1,4-dioxane	5a	IPr	31	38
2	$Ni(cod)_2$	1,4-dioxane	5b	IPr	trace	49
3	$Ni(cod)_2$	1,4-dioxane	5c	IPr	51	20
4	$Ni(cod)_2$	1,4-dioxane	5d	IPr	62	13
5	$Ni(cod)_2$	toluene	5d	IPr	trace	34
6	$Ni(cod)_2$	THF	5d	IPr	44	28
7	$Ni(cod)_2$	EtOEt	5d	IPr	12	19
8	Ni(cod) ₂	THF/1,4-	5d	IPr	78	trace

Table	S1 .	Screening	optimal	conditions
-------	-------------	-----------	---------	------------

		dioxane				
9	NiI ₂ (PPh ₃) ₂	THF/1,4- dioxane	5d	IPr	trace	15
10	$NiCl_2(dppe)_2$	THF/1,4- dioxane	5d	IPr	9	33
11	Ni(PPh ₃) ₄	THF/1,4- dioxane	5d	IPr	24	36
12	NiCl ₂	THF/1,4- dioxane	5d	IPr	trace	14
13	$Ni(cod)_2$	THF/1,4- dioxane	5d	PCy ₃	trace	21
14	$Ni(cod)_2$	THF/1,4- dioxane	5d	ItBu	32	10
15	$Ni(cod)_2$	THF/1,4- dioxane	5d	SIPr	41	17
16	none	THF/1,4- dioxane	5d	IPr	0	0
17 ^c	$Ni(cod)_2$	THF/1,4- dioxane	5d	IPr	46	21

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.3 mmol), MgCl₂ (0.3 mmol), hydrogen acceptor (1.5 equiv), Ni source (8 mol%), ligands (10 mol%), solvent (3 mL), 30 °C, in Ar atmosphere for 8 h. ^{*b*} Isolated yield. ^{*c*} Without MgCl₂. cod = 1,5-cyclooctadiene, dppe = 1,2-bis(diphenylphosphino)ethane, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole- 2-ylidene, ItBu = 1,3-Di-tert-butylimidazol-2-ylidene, SIPr = 1,3-bis(2,6-di- isopropylphenyl)imidazolidin-2-ylidene.

(D) Deuterium-labeling experiment

A 10 mL oven-dried Schlenk tube was charged with **1a** (0.2 mmol), **1a**- d_6 (0.2 mmol), **2a** (0.4 mmol), MgCl₂ (0.4 mmol), **5d** (0.6 mmol), Ni(cod)₂ (15 mol %), IPr (20 mol %), 1,4-dioxane (2.0 mL), THF (2.0 mL). Then the tube was charged with argon, and was stirred at 30 °C for about 8 h. After the reaction was finished, the reaction mixture was diluted in 10 mL EtOAc. The solution was filtered through a celite pad and washed with 30 mL of EtOAc. The organic portion was washed with a saturated solution of NH₄Cl (8 mL×2), bine (8 mL×2), dried (Na₂SO₄) and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to provide the desired products **3aa** and **3aa**- d_5 in a ratio of 5.9:1 (determined by HRMS).

The HRMS spectra of **3aa** and **3aa**- d_5

(E) Analytical data

Benzophenone (3aa): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.83 (dd, J = 8.0 Hz, J = 1.6 Hz, 4H), 7.61-7,56 (m, 2H), 7.51-7.45 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.7, 137.8, 132.5, 130.2, 128.4; IR (neat cm⁻¹): 1660 (C=O); LRMS (EI 70 ev) m/z (%): 182 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₃H₁₁O (M+H)⁺ 183.0804, found 183.0801.

Phenyl(p-tolyl)methanone (3ab): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.4, 143.2, 137.9, 134.8, 132.1, 130.2, 129.8, 128.9, 128.1, 21.6; IR (neat cm⁻¹): 1658 (C=O); LRMS (EI 70 ev) m/z (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0963.

(4-Methoxyphenyl)(phenyl)methanone (3ac): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.51-7.45 (m, 3H), 6.96 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.1, 163.2, 138.2, 132.4, 131.7, 130.0, 129.5, 128.2, 113.6, 55.8; IR (neat cm⁻¹): 1652 (C=O); LRMS (EI 70 ev) m/z (%): 212 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O₂ (M+H)⁺ 213.0909, found 213.0913.

Phenyl(o-tolyl)methanone (3ad): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, *J* = 7.2 Hz, 2H), 7.54-7.50 (m, 1H), 7.43-7.36 (m, 2H), 7.33-7.26 (m, 1H), 7.25-7.20 (m, 3H); 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 198.5, 138.8, 138.1, 137.0, 133.5, 131.7, 130.6, 130.3, 129.0, 128.8, 125.4, 20.4; IR (neat cm⁻¹): 1647 (C=O); LRMS (EI 70 ev) *m/z* (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0961.

Phenyl(m-tolyl)methanone (3ae): ²

¹H NMR (400 MHz, CDCl₃) δ : 7.81 (dd, J = 1.2 Hz, J = 8.4 Hz, 2H), 7.62-7.57 (m, 3H), 7.46-7.40 (m, 2H), 7.38 (dd, J = 4.4 Hz, J = 4.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.8, 138.1, 137.4, 137.1, 133.0, 132.1, 130.6, 130.1, 128.4, 128.0, 127.2, 21.3; IR (neat cm⁻¹): 1663 (C=O); LRMS (EI 70 ev) m/z (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0954.

(4-Florophenyl)(phenyl)methanone (3af): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.86-7.83 (m, 2H), 7.78 (d, J = 4.2 Hz, 2H), 7.62 (dd, J = 7.2 Hz, J = 1.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 165.5, 162.9, 137.6, 132.7, 132.7, 132.6, 132.4, 132.0, 129.8, 128.3, 115.5, 115.3; IR (neat cm⁻¹): 1661 (C=O); LRMS (EI 70 ev) m/z (%): 200 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₃H₁₀FO (M+H)⁺ 201.0710, found 201.0719.

4-Trifluoromethylbenzophenone (3ag): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.90 (d, J = 8.0 Hz, 2H), 7.81 (dd, J = 7.6 Hz, J = 8.0 Hz, 4H),

7.65 (t, J = 7.2 Hz, 2H), 7.53 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 140.6, 136.6, 133.8, 133.5, 133.0, 130.1, 130.0, 128.5, 125.38, 125.34, 125.31, 125.2, 125.0, 122.2, IR (neat cm⁻¹): 1660 (C=O); LRMS (EI 70 ev) m/z (%): 250 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₀F₃O (M+H)⁺ 251.0672, found 251.0667.

(3,4-Dimethylphenyl)(phenyl)methanone (3ah): ³

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (t, J = 4.2 Hz, 2H), 7.61 (s, 1H), 7.59-7.52 (m, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 198.3, 141.9, 138.0, 136.7, 135.3, 132.0, 131.1, 129.9, 129.4, 128.1, 128.0, 20.0, 19.7; IR (neat cm⁻¹): 1661 (C=O); LRMS (EI 70 ev) m/z (%): 210 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₅H₁₅O (M+H)⁺ 211.1116, found 211.1111.

(Naphthalen-6-yl)(phenyl)methanone (3ai): ⁴

¹H NMR (400 MHz, CDCl₃) δ : 8.23 (s, 1H), 7.98-7.84 (m, 6H), 7.63-7.56 (m, 2H), 7.52-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.1, 137.8, 135.1, 134.6, 132.4, 32.1, 131.7, 130.0, 129.4, 128.5, 128.3, 128.1, 127.7, 126.7, 125.6; IR (neat cm⁻¹): 1660 (C=O); LRMS (EI 70 ev) *m/z* (%): 232 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₇H₁₃O (M+H)⁺ 233.0959, found 233.0961.

(Furan-2-yl)(phenyl)methanone (3aj): ⁵

¹H NMR (400 MHz, CDCl₃) δ : 7.99-7.94 (m, 2H), 7.72 (dd, J = 2.4 Hz, J = 1.2 Hz, 1H), 7.64-7.57 (m, 1H), 7.51-7.44 (m, 2H), 7.24 (dd, J = 4.8 Hz, J = 1.2 Hz, 1H), 6.61 (dd, J = 4.8 Hz, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 182.8, 152.2, 147.2, 137.1, 132.2, 129.2, 128.4, 120.7, 112.5; IR (neat cm⁻¹): 1630 (C=O); LRMS (EI 70 ev) m/z (%): 172 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₁H₉O₂ (M+H)⁺ 173.0637, found 173.0648.

Biphenyl-4-yl(phenyl)methanone (3ca): ⁶

¹H NMR (400 MHz, CDCl₃) δ : 7.90-7.87 (m, 2H), 7.84-7.80 (m, 2H), 7.71-7.59 (m, 5H), 7.50-7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.4, 144.9, 140.0, 137.5, 136.2, 132.1, 130.7, 139.9, 129.0, 128.4, 128.1, 127.2, 127.7; IR (neat cm⁻¹): 1651 (C=O); LRMS (EI 70 ev) *m/z* (%): 258 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₉H₁₅O (M+H)⁺ 259.1124, found 259.1127.

Methyl 4-Benzoylbenzoate (3da): 7

¹H NMR (400 MHz, CDCl₃) δ : 8.14 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.78-7.76 (m, 2H), 7.60-7.56 (m, 1H), 7.48 (t, J = 7.6 Hz, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.1, 166.2, 141.0, 137.0, 133.1, 132.8, 130.0, 129.6, 129.3, 128.2, 52.1; IR (neat cm⁻¹): 1731 (C=O), 1652 (C=O); LRMS (EI 70 ev) m/z (%): 240 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₅H₁₃O₃ (M+H)⁺ 241.0861, found 241.0855.

(3,4-Methylenedioxyphenyl)phenylmethanone (3ea): ⁸

¹H NMR (400 MHz, CDCl₃) δ : 7.76-7.70 (m, 2H), 7.57-7.51 (m, 1H), 7.47-7.42 (m, 2H), 7.37-7.32 (m, 2H), 6.85 (d, J = 8.4 Hz, 1H), 6.04 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.2, 151.7, 148.3, 138.4, 132.3, 132.1, 129.9, 128.1, 127.3, 110.2, 108.0, 102.1; IR (neat cm⁻¹): 1663 (C=O); LRMS (EI 70 ev) m/z (%): 226 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₁O₃ (M+H)⁺ 227.0703, found 227.0698.

Phenyl(thiophen-2-yl)methanone (3fa):⁹

¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 4.8 Hz, 1H), 7.65 (d, J = 3.6

Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.17 (t, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 188.2, 143.6, 138.1, 134.8, 134.1, 132.2, 129.1, 128.3, 127.9; IR (neat cm⁻¹): 1638 (C=O); LRMS (EI 70 ev) m/z (%): 188 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₁H₉OS (M + H)⁺ 189.0368, found 189.0361.

1-phenylpentan-1-one (3ga):4

¹H NMR (400 MHz, CDCl₃) δ : 7.97-7.93 (m, 2H), 7.56-7.52 (m, 1H), 7.47-7.43 (m, 2H); 2.93 (t, *J* = 7.2 Hz, 2H), 1.76-1.68 (m, 2H), 1.46-1.36 (m, 2H), 0.90 (t, *J* = 7.24 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 200.2, 137.4, 132.5, 128.4, 128.0, 38.4, 26.7, 22.4, 13.9; IR (neat cm⁻¹): 1671 (C=O); LRMS (EI 70 ev) *m/z* (%): 162 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₁H₁₅O (M+H)⁺ 163.1117, found 163.1113.

2-Methyl-1-phenylpropan-1-one (3ha):¹

¹H NMR (400 MHz, CDCl₃) δ : 7.96-7.92 (m, 2H), 7.58-7.52 (m, 1H), 7.48-7.42 (m, 2H); 3.69-3.54 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 204.1, 136.0, 132.4, 128.6, 128.1, 35.0, 18.9; IR (neat cm⁻¹): 1677 (C=O); LRMS (EI 70 ev) m/z (%): 148 (M⁺, 100); HRMS m/z(ESI) calcd for C₁₀H₁₃O (M + H)⁺ 149.0961, found 149.0967.

Ethyl 3-oxo-3-phenylpropanoate (3ia):¹⁰

¹H NMR (400 MHz, CDCl₃) δ : 7.89 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42-7.32 (m, 2H), 4.22-4.11 (m, 2H), 3.93 (s, 2H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 192.3, 167.3, 135.6, 133.4, 128.5, 128.2, 61.1, 45.6, 13.8; IR (neat cm⁻¹): 1711 (C=O), 1669 (C=O); LRMS (EI 70 ev) m/z (%): 192 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₁H₁₃O (M + H)⁺ 193.0859, found 193.0863.

(F) References

- 1) M. Li, C. Wang, H. Ge, Org. Lett. 2011, 13, 2062.
- 2) M. Cai, G. Zheng, L. Zhang, J. Peng, Eur. J. Org. Chem. 2009, 2009, 1585.
- 3) K. P. Boroujeni, Chin. Chem. Lett. 2010, 21, 1395.
- 4) G. Wang, X. Li, J. Dai, H. Xu, J. Org. Chem. 2014, 79, 7220.
- 5) T. T. Nguyen, N. Marquise, F. Chevallier, F. Mongin, Chem. Eur. J. 2011, 17, 10405.
- 6) L. Meng, J. Su, Z. Zha, L. Zhang, Z. Zhang, Z. Wang, Chem. Eur. J. 2013, 19, 5542.
- 7) Q. Zhou, S. Wei, W. Han, J. Org. Chem. 2014, 79, 1454.
- 8) T. T. Dang, A. Chen, A. M. Seayad, RSC Adv., 2014, 4, 30019.
- 9) B. Xin, Y. Zhang and K. Cheng, J. Org. Chem. 2006, 71, 5725
- 10) M. Mineno, Y. Sawai, K. Kanno, N. Sawada, H. Mizufune, J. Org. Chem. 2014, 78, 5843.

(G) Spectra

¹H NMR of Compound 3aa

¹³C NMR of Compound 3aa

¹H NMR of Compound 3ab

¹³C NMR of Compound 3ab

¹H NMR of Compound 3ac

¹³C NMR of Compound 3ac

¹H NMR of Compound 3ad

¹³C NMR of Compound 3ad

¹H NMR of Compound 3ae

¹³C NMR of Compound 3ae

¹H NMR of Compound 3af

¹³C NMR of Compound 3af

¹H NMR of Compound 3ag

¹³C NMR of Compound 3ag

¹H NMR of Compound 3ah

¹³C NMR of Compound 3ah

¹H NMR of Compound 3ai

¹³C NMR of Compound 3ai

¹H NMR of Compound 3aj

¹³C NMR of Compound 3aj

¹H NMR of Compound 3ca

¹³C NMR of Compound 3ca

¹H NMR of Compound 3da

¹³C NMR of Compound 3da

7.763 7.758 7.743 7.725 7.708 7.575 7.560 7.543 7.524 7.517 7.473 7.453 7.446 7.431 7.427 7.424 7.372 7.349 7.333 7.329 7.339 7.329 6.852 6.831 6.042

¹H NMR of Compound 3ea

¹³C NMR of Compound 3ea

¹H NMR of Compound 3fa

¹³C NMR of Compound 3fa

¹H NMR of Compound 3ga

¹³C NMR of Compound 3ga

¹H NMR of Compound 3ha

¹³C NMR of Compound 3ha

¹³C NMR of Compound 3ia