Supporting information

Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions

Tianyuan Cheng^a, Hao Yu^{*a}, Feng Peng^a, Hongjuan Wang^a, Bingsen Zhang ^{*b},

Dangsheng Su^b

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China

^b Catalysis and Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China

EELS analysis: The Co-L_{2,3} intensity ratio was determined by the method described by Pearson et al. ¹A 50eV width window was selected beginning at 50 eV past the onset of the L₃ white line. The linear fit curve of the loss intensity in this energy interval was extrapolated toward smaller energy losses. This line was then modified into a double step with the same slope with onsets occurring at the white-line maxima. The ratio of the step heights was chosen as 2:1 in accordance with the multiplicity of the initial states (four 2p3/2 electrons and two 2p1/2 electrons).

^{*} To whom correspondence should be addressed. <u>yuhao@scut.edu.cn</u> (H Yu), Tel.: +86 20 87114916, Fax.: + 86 20 87114916; <u>bszhang@imr.ac.cn</u> (BS Zhang), Tel.: +86 24 83970027

Table S1. Catalytic performances of FeNC/CNT and CoNC/CNT catalysts in the oxidative esterification of BA (Scheme 1)^a

Entry	Catalysts	Composition	$\mathbf{S}_{\mathrm{BET}}$	Conv.	Selectivity (%)	
		Co/Fe/N (w%)	(m^2/g)	(%)	BDH	MB
1	FeNC/CNT	-/1.54/0.33	131.4	24.5	82.9	17.1
2	CoNC/CNT	1.81/-/1.42	155.9	88.1	8.4	91.6

a Reaction conditions: 0.4 ml BA, 32 ml CH₃OH, 0.1 g K₂CO₃, 0.2 g catalyst, 60 $^{\rm o}$ C, 2 MPa O₂, 12 h

For comparison, FeNC/CNT catalyst was synthesized using 90 mg of $Fe(OAc)_2$, 205 mg of 1,10-phenanthroline(Fe : phenanthroline = 1:2 (mol)) and 650 mg of CNTs with the same procedure. As shown in Table S1, the conversion of CoNC/CNT is about 3.5 folds higher than FeNC/CNT.

Fig. S1 Time courses of CoNC/CNT, CoNC/CNT-HCl, CoNC/CNT-HNO₃ in the oxidative esterification of BA. The curves are fitted by the pseudo-second-order kinetics. Reaction conditions: 0.4 ml BA, 32 ml CH₃OH, 0.1 g K₂CO₃, 0.2 g catalyst, 60 $^{\circ}$ C, 2 MPa O₂.

Fig. S2 Arrhenius plots of the oxidative esterification over CoNC/CNT, CoNC/CNT-HCl and CoNC/CNT-HNO₃. Different reaction conditions were used for different catalysts to ensure the conversion of BA lower than 10%.

Reaction conditions for CoNC/CNT and CoNC/CNT-HCl: 8 ml BA, 24 ml CH₃OH, 0.1 g K₂CO₃, 0.05 g catalyst, 2 MPa O₂.

Reaction conditions for CoNC/CNT-HNO₃: 0.4 ml BA, 32 ml CH₃OH, 0.1 g K₂CO₃, 0.2 g catalyst, 2 MPa O₂.

Fig. S3 HRTEM image of a Co₃O₄@graphene core-shell structure on CoNC/CNT-HCl. This structure is only occasionally observed.

Fig. S4 (a) TEM and (b) corresponding EFTEM images of CoNC/CNT-HCl.

Fig. S5 (a) HRTEM image and (b) STEM-EDS mapping images of CoNC/CNT-HCl

Fig. S6 (a) TEM and (b) corresponding EFTEM images of CoNC/CNT-HCl after the adsorption of KSCN.

Fig. S7 Raman spectra of CoNC/CNT, CoNC/CNT-HCl, CoNC/CNT-HNO₃ and CNTs. The I_D/I_G ratios of CoNC/CNT and CoNC/CNT-HCl are obviously higher than that of pristine CNTs, because of the formation of N-doped graphene during the pyrolysis. The I_D/I_G ratio of CoNC/CNT-HNO₃ is close to that of CNTs, indicating the destruction of the graphenes under oxidative HNO₃.

Fig. S8 H_2 S-TPD profiles of CNTs and N-doped CNTs.

References

1. D. H. Pearson, C. C. Ahn and B. Fultz, *Physical Review B*, 1993, 47, 8471-8478.