Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

1

SUPPORTING INFORMATION

2	Oxygen vaca	ancies on nanosized ceria govern
3	the NO_x sto	orage capacity of NSR catalysts
4		Yan Zhang [†] ; Yunbo Yu [†] ; Hong He*
5	State Key Joint Labo	ratory of Environment Simulation and Pollution Control,
6	Research Center for Ec	co-Environmental Sciences, Chinese Academy of Sciences,
7		Beijing, 100085, China
8	Corresponding Author	
9	Hong He* E	E-mail: honghe@rcees.ac.cn
10		
11		

1 1. Experimental.

2	Methanol adsorption: The Pt/BaO/CeO ₂ samples were pretreated in the DRIFTS
3	cell in flowing 10% H_2/He (25 mL/min) at 450 $^{\rm o}C$ for 1h and then cooled to room
4	temperature before switching to He. During the process, the reduced samples do not
5	expose to the oxygen. Methanol (Sigma-Aldrich, >99.9%) was bubbled with 25
6	mL/min He at room temperature, which was fed to the in situ DRIFTS cell. Then,
7	IR measurement was carried out until the spectrum was stable.

2. Results.

2 2.1 TEM and HRTEM images of NSR catalysts.

- 2 Figure S1. TEM and HRTEM images of CeO₂-NP (a), CeO₂-NC (b), CeO₂-NR (c),
- 3 and Pt/BaO/CeO₂-NP (d and g), Pt/BaO/CeO₂-NC (e and h), Pt/BaO/CeO₂-NR (f and
- 4

i).

Figure S2. Evolutions of NO, NO₂ and NO_x as a function of time and temperature

under lean condition over Pt/BaO/CeO2-NP (a), Pt/BaO/CeO2-NC (b), and

Pt/BaO/CeO₂-NR (c).

5

4

2

3

Theoretical NO_x storage capacity. We also measured the NO_x storage capacity on the 6 7 Ba-free samples. Taking Pt/CeO₂-NR as an example (Figure S4), the maximium NSC value of 93.2 µmol/g-cat was obtianed at 350 °C, which is 10% of the NSC value of 8 Pt/BaO/CeO₂-NR at the same temperature. At whole temperature range, the NO_x 9 storage capacity of Pt/CeO2-NR is much lower than that Ba-containing one 10 (Pt/BaO/CeO₂-NR). As a result, the theoretical NSC is calculated in accordance with 11 the actual amount of BaO obtained from ICP-OES, considering all the NO_x storaged on 12 13 the BaO sites.

1 2.3 The effect of CO₂ and H₂O on the catalytic performance and NH₃ selectivity.

Figure S4. Evolutions of NO_x as a function of time and temperature under lean
conditions over Pt/BaO/CeO₂-NP (a), Pt/BaO/CeO₂-NC (b), and Pt/BaO/CeO₂-NR (c);
NO_x storage capacities (NSC) tested at different temperatures over Pt/BaO/CeO₂

5 catalysts without CO₂ and H₂O (solid), or with 1% CO₂, 2% H₂O (hatchfaces) (d).

Figure S5. Evolutions of NH₃ concentrations under cyclic lean-rich conditions at
 different temperatures on Pt/BaO/CeO₂-NP (a), Pt/BaO/CeO₂-NC (b), and
 Pt/BaO/CeO₂-NR (c).

Table S1 NH_3 selectivity of all NSR catalysts under lean-rich conditions at different

2	temperatures.							
	Samples –	NH ₃ selectivity (%)						
		200 °C	250 °C	300 °C	350 °C	400 °C		
	Pt/BaO/CeO2-NP	52.83	35.54	10.07	5.24	0.88		
	Pt/BaO/CeO2-NC	58.70	46.52	41.43	33.97	37.41		
	Pt/BaO/CeO2-NR	11.54	4.39	0.74	4.07	5.37		

Figure S6. Evolutions of NO_x concentrations under cyclic lean-rich conditions at
different temperatures on Pt/BaO/CeO₂-NP (a), Pt/BaO/CeO₂-NC (b), and
Pt/BaO/CeO₂-NR (c); average NO_x conversion over all NSR catalysts under cyclic
lean-rich conditions at different temperatures without CO₂ and H₂O (solid), or with 1%
CO₂, 2% H₂O (hatchfaces) (d).

1 2.4 Pt XPS, Pt-L_{III} EXAFS spectra, and Ce XPS.

1 Table S2. XPS binding energies of individual peaks of the Pt 4f spectra for NSR

Samples	Pt 4f _{7/2}	Pt 4f _{5/2}	Pt 4f _{7/2}	Pt 4f _{5/2}	Pt 4f _{7/2}	Pt 4f _{5/2}
Pt/BaO/CeO ₂ -NP	72.5	75.8	74.1	77.6	-	-
Pt/BaO/CeO ₂ -NP-R	71.8	75.2	74.2	77.0	70.8	74.1
Pt/BaO/CeO2-NC	72.5	75.8	74.3	77.6	-	-
Pt/BaO/CeO ₂ -NC-R	72.1	75.5	74.2	77.4	70.9	74.1
Pt/BaO/CeO2-NR	72.4	75.7	73.8	77.1	-	-
Pt/BaO/CeO ₂ -NR-R	72.2	75.5	74.0	77.1	71.0	74.3

2 catalysts and corresponding H₂-treated catalysts.

filtered $k^3 \cdot \chi(k)$ in the k range of 3-12 Å⁻¹. (a) samples before H₂ reduction; (b)

samples exposed to air after H_2 reduction.

		samples ^[a] .			
Samples	Shell	CN	R/Å (±0.001)	DW/Å	R factor
Pt foil	Pt-Pt	12.0	2.77	0.073	1.5
PtO ₂	Pt-O Pt-O-Pt	6.0 4.0	2.02 3.10	0.069 0.048	4.2
Pt/BaO/CeO ₂ -NP	Pt-O	5.7 ± 0.7	2.00	0.065	0.37
Pt/BaO/CeO ₂ -NC	Pt-O	5.4 ± 0.7	2.00	0.066	0.97
Pt/BaO/CeO ₂ -NR	Pt-O	5.9 ± 0.7	2.00	0.062	0.12
Pt/BaO/CeO ₂ -NP-	Pt-O	3.9 ± 0.3	2.01	0.084	1.70
R ^[b]	Pt-Pt	1.7 ± 0.3	2.67	0.083	1.79
Pt/BaO/CeO ₂ -	Pt-O	3.1 ± 0.3	2.02	0.078	5 41
NC-R ^[b]	Pt-Pt	1.5 ± 0.4	2.78	0.078	5.41
Pt/BaO/CeO ₂ -	Pt-O	3.7 ± 0.4	2.02	0.091	0.62
NR-R ^[b]	Pt-Pt	2.1 ± 0.5	2.67	0.092	0.62

Table S3. Fitting parameters of the curve fitted k³-weighted EXAFS analysis of all

3 ^[a] CN = coordination number, R = bond length, DW = Debye-Waller factor, Pt-Pt is

4 the coordination shell in Pt metal, Pt-O is the first coordination shell in PtO_2 , Pt-O-Pt

5 is the second coordination shell in PtO_2 .

^[b] Samples exposed to ambient air after H₂ reduction at 450 °C for 60 min.

	Ce ⁴⁺						Ce ³⁺
Sample	v	v"	v"	u	u''	u''' (relative peak area/%)	v'u'
CeO ₂ -NP	881.9	888.4	897.8	900.4	907.1	916.2	884.6 903.0
Pt/BaO/CeO ₂ -NP	881.9	888.5	897.8	900.5	907.1	(14.8) 916.2 (14.4)	884.8 902.7
Pt/BaO/CeO ₂ -NP-R ^[b]	882.0	888.6	897.9	900.5	907.2	916.3	884.8 902.6
CeO ₂ -NC	881.9	888.5	897.8	900.5	907.2	(13.5) 916.2 (15.1)	884.5 902.3
Pt/BaO/CeO2-NC	881.9	888.5	897.8	900.5	907.1	916.2	884.8 902.0
Pt/BaO/CeO2-NC-R ^[b]	882.0	888.6	897.8	900.4	907.0	(15.2) 916.2 (14.3)	884.7 901.7
CeO ₂ -NR	881.8	888.3	897.7	900.4	907.2	916.1	884.3 903.0
Pt/BaO/CeO ₂ -NR	882.0	888.6	897.9	900.5	907.2	(14.7) 916.3 (13.9)	884.8 902.8
Pt/BaO/CeO ₂ -NR-R ^[b]	881.6	888.2	897.5	900.2	906.9	915.9 (12.7)	884.2 903.3

1 Table S4. XPS binding energies of individual peaks of the Ce 3d spectra for CeO₂

2 nanomaterials calcined at 550 °C and corresponding NSR catalysts.

3 $R^{[b]}$: the NSR catalysts reduced by 3% H₂.

3	Figure S9. in situ DRIFTS spectra of adsorbed species in flowing methanol at room
4	temperature on Pt/BaO/CeO ₂ -NP-R (a), Pt/BaO/CeO ₂ -NC-R (b), and Pt/BaO/CeO ₂ -
5	NR-R (c).
6	Before the measurement, the samples were pretreated by 10% H ₂ /He (25 mL/min) at

7 450 °C for 1h, and then cooled to room temperature. Conditions: 16.6 % CH₃OH, He
8 balance.

Table S5. The integral area of band at 970-1085 cm⁻¹ on the reduced NSR catalysts.

Samples	Integral Area of 970-1085 cm ⁻¹ (g ⁻¹)					
	NP	NC	NR			
Pt/BaO/CeO ₂ -R	0.185	0.104	0.240			

1 2.5 Reducibility of NSR catalysts

Figure S10. H₂-TPR profiles of the different shaped CeO₂.

4

Samples	Total H ₂ consumption (µmol)	Peak	Peak max (°C)	Peak area	Peak area ratio (%)	H ₂ consumption (µmol)
Pt/BaO/CeOa		Platinum oxide Promoted surface CeO2	213.1 226.9	0.53 0.50	13.7 13.0	
	110.8	Surface CeO ₂	598.1	0.61	15.7	
-111		Total surface CeO ₂ ^a	_	1.11	28.7	31.8
		Bulk CeO ₂	747.3	2.23	57.6	
	123.6	Platinum	201.0	0.34	8.2	
Pt/BaO/CeO ₂		Promoted surface CeO ₂	225.4	0.14	3.3	
-NC		Surface CeO ₂	556.5	0.47	11.5	
		Total surface CeO ₂ ^a	_	0.61	14.8	18.3
		Bulk CeO2	760.3	3.17	77.0	
		Platinum oxide	137.2	1.08	20.0	
Pt/BaO/CeO ₂		Promoted surface CeO ₂	182.3	0.78	14.5	
-NR	158.8	Surface CeO ₂	553.7	1.52	28.1	
		Total surface CeO ₂ ^a	_	2.30	42.6	67.6
		Bulk CeO ₂	746.9	2.03	37.4	

Table S6. The ratios of different species estimated by the area of corresponding peak

2 during H₂-TPR on Pt/BaO/CeO₂-NP, Pt/BaO/CeO₂-NC, and Pt/BaO/CeO₂-NR.

 $\overline{}^{a}$ the total amounts of H₂ consumption related to promoted surface CeO₂ and surface

 CeO_2 far away from Pt.

1 2.6 Relationship between properties of the catalysts and catalytic performance

Figure S11. NO_x storage capacities (NSC) tested at different temperatures for

Pt/CeO₂-NR, and Pt/BaO/CeO₂-NR.

