Supplementary information for

An in-situ approach to preparing Ni₂P/SiO₂ catalyst under mild condition and its performance for the deoxygenation of methyl laurate as a model compound to hydrocarbons

Jixiang Chen^{*}, Mengmeng Han, Sha Zhao, Zhengyi Pan, Zhena Zhang

Preparation of Ni₃P/SiO₂-TPR, Ni₁₂P₅/SiO₂-TPR and Ni₂P/SiO₂-TPR

Silica was incipiently impregnated with a mixture aqueous solution of $NH_4H_2PO_4$ and Ni(NO₃)₂, followed by drying at 120 °C for 12 h and calcination at 550 °C for 4 h to produce the catalyst precursor, where the nominal Ni/P ratio was 3.0, 2.0 or 1.0. Secondly, the catalyst was prepared by the TPR process from the precursor as the following program: heating from room temperature to 250 °C at 10 °C /min and from 523 to 923 °C at 1 °C /min, maintaining at 923 °C for 3 h and then cooling to room temperature. The H₂ (>99.9%) flow was set as 320 ml/min per gram of precursor. Ni₃P/SiO₂-TPR, Ni₁₂P₅/SiO₂-TPR and Ni₂P/SiO₂-TPR were prepared from the precursors with the Ni/P ratios of 3.0, 2.0 and 1.0, respectively. To avoid the drastic oxidation, the prepared catalysts were passivated in a 0.5%(vol)O₂/N₂ flow for 4 h before exposure to air.

Figure 1S H₂-TPR profiles of NiO/SiO₂ or Ni(NO₃)₂/SiO₂

Figure 2S XRD patterns of Ni/SiO2 and Ni/SiO2-N

Figure 3S TEM images of Ni/SiO₂ and the SiO₂-supported nickel phosphides prepared at different nominal P/Ni ratios

Figure 4S TG profiles of the SiO_2 -supported nickel phosphides prepared with different nominal P/Ni ratios at 400 °C

Figure 5S BJH pore size distributions of Ni/SiO₂ and SiO₂-supported nickel phosphides prepared at different nominal P/Ni ratios. Other condition: 400 °C, WHSV of TPP = 0.5 h⁻¹, H₂ flow

Figure 6S XRD patterns of the phosphorized samples at 200 $^{\circ}$ C with P/Ni ratio of (a)

0.75; (b) 1.0 and (c) 1.5

Figure 7S XRD patterns of (a) Ni/SiO₂-P150-300; (b) Ni/SiO₂-P200-300 and (c) Ni/SiO_2 -P225-300

Figure 8S XRD patterns (A) and magnetic hysteresis loops at room temperature (B) of Ni₃P/SiO₂-TPR, Ni₁₂P₅/SiO₂-TPR and Ni₂P/SiO₂-TPR

Figure 9S TGA profiles of samples phosphorized at different temperatures

Figure 10S Pore size distributions of Ni/SiO₂ and SiO₂-supported nickel phosphides prepared at different temperatures. Other condition: nominal P/Ni ratio = 0.75, WHSV of TPP = 0.5 h⁻¹, H₂ flow.

Figure 11S PH₃ (mass=34) signal during the hydrogenolysis of TPP on (a) SiO₂ and (b) Ni/SiO_2

Figure 12S XRD patterns of Ni/SiO₂-N and Ni₂P/SiO₂-N

Figure 13S Comparison of performance of (A) Ni_2P/SiO_2 and (B) Ni_2P/SiO_2 -N