Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Disintegrative Activation of Pd Nanoparticles on Carbon Nanotube for Catalytic Phenol Hydrogenation

Experimental

Preparation of Pd/CNT catalyst

400 mg carbon nanotubes (CNTs) were dispersed into 25 ml water by sonicating for 30 min. Then Pd(NO₃)₂ solution were added dropwise into the CNTs suspension. After stirring for 8 h at room temperature, water was removed using a rotary evaporator at 60 °C under vacuum. After drying at 80 °C for 8 h in vacuum oven, the powder were reduced at 200 °C for 2 h with H₂.

The annealed Pd/CNT were obtained by annealing the Pd/CNT at 500 °C for 4 h in Ar atmosphere.

Redisperse annealed Pd/CNT

1. Redisperse annealed Pd/CNT with HNO₃ vapor

100-400 mg annealed Pd/CNT were put into a silica cup, which holds some small pores on the cup bottom and wall. Then this cup was placed in a hydrothermal autoclave, which contained some amounts of concentrated HNO₃. The sealed autoclave were put into a heated oven with 80-120 °C. After 1-6 h, the autoclave were taken out and cooled to room temperature. The Pd/CNT power were washed, dried and reduced with H₂.

2. Redisperse annealed Pd/CNT with oxygen and nitrogen oxide

100-400 mg were put into a Teflon-lined stainless-steel reactor which was filled with oxygen/nitrogen oxide. Then the autoclave was heated to a given temperature. After 6 h, the autoclave cooled to room temperature. The Pd/CNT power were washed, dried and reduced with H₂.

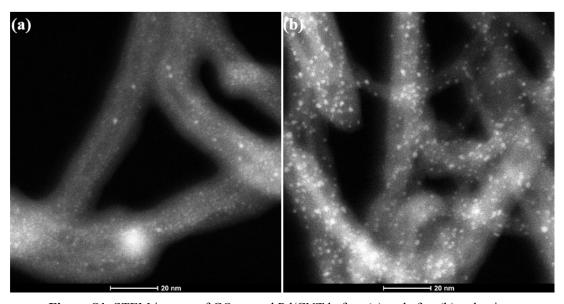
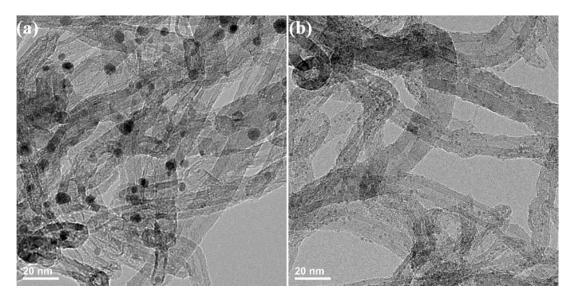
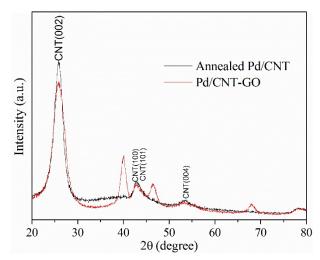
Characterization of catalysts

Transmission electron microscopy (TEM) images and scanning transmission electron microscopy (STEM) images were obtained by using an FEI Tecnai G2 F20 microscope operated at 200 kV. The X-ray Photoelectron Spectroscopy (XPS) were carried out at

ESCALAB 250 instrument with Al K α X-rays (1489.6 eV, 150 W, 50.0 eV pass energy). The XRD patterns of the Pd/CNT catalysts were collected by using an X-ray diffractometer (D/MAX-2400) using a Cu K α source at a scan rate of 2° • min-1.

Selective Phenol Hydrogenation

The reaction was conducted in a Schlenk flask (20 ml) with a graham condenser. A typical procedure was as follows: phenol (0.5 mmol), catalyst (10 mg), and water 2 ml were placed in a flask. The flask was purged with H2 to remove the air for 3 times, the reaction was then stirred at 80 °C under 1 bar of H2. During the reaction H2 was continuously supplied to maintain the pressure.

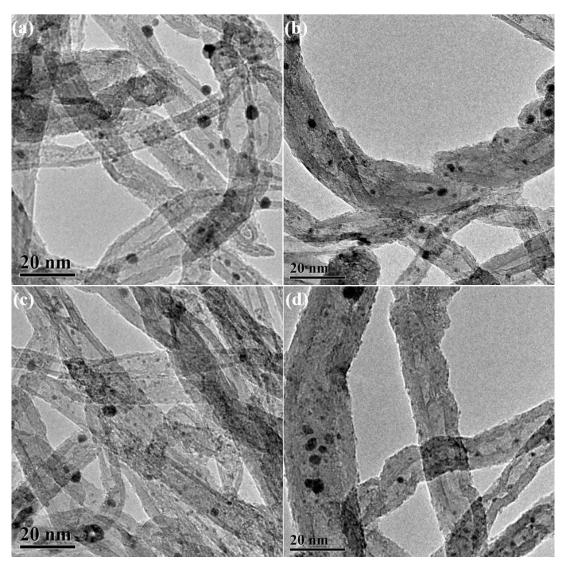

Figure S1. STEM images of GO treated Pd/CNT before (a) and after (b) reduction.

Figure S2. TEM images of (a) Annealed Pd/CNT, (b) Pd/CNT-GO at 120 °C for 6 h.

Figure S3. XRD patterns of (a) Annealed Pd/CNT, (b) Pd/CNT-GO at 120 °C for 6 h with reduction.

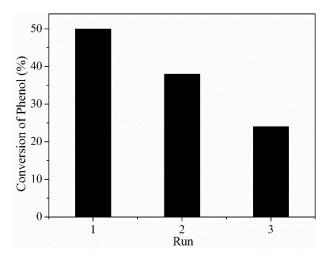
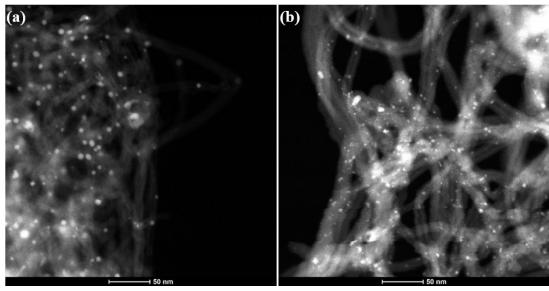
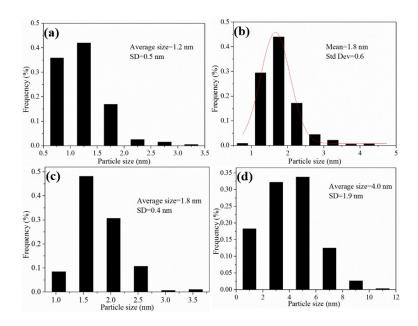
Figure S4. TEM images of Pd/CNT after GO treatment at (a) 80 $^{\circ}$ C for 6 h, (b) 100 $^{\circ}$ C for 6 h, (c) 120 $^{\circ}$ C for 1 h, (d) 120 $^{\circ}$ C for 3 h.

Table 1. The content of surface oxygen and surface atomic ratio of fresh and GO treated Pd/CNT catalysts without reduction, obtained from XPS analysis.

Catalyst	Temperatur	Time/	Atomic ratio(Pd/C)	C(At. %)	N(At. %)	O(At. %)	Pd(At. %)
	e/°C	h					
Annealed Pd/CNT	-	-	3.7 e ⁻³	94.87	0	4.78	0.35
Pd/CNT-GO	80	6	4.7e ⁻³	93.12	0.56	5.86	0.46
	100	6	4.9e ⁻³	92.15	0.74	6.68	0.43
	120	1	5.3e ⁻³	92.88	0.54	6.09	0.49
	120	3	5.5e ⁻³	90.88	0.81	7.8	0.50
	120	6	5.7e ⁻³	89.78	0.78	8.93	0.51

Table 2. The content of surface oxygen and surface atomic ratio of fresh and GO treated Pd/CNT catalysts without reduction, obtained from XPS analysis.

Gas	P _{Gas} (MPa)	Temperature/°C	Time/h	C(At.%)	N(At.%)	O(At. %)	Pd(At. %)
40% O ₂	1	120	6	94.02	1.07	4.58	0.34
40% O ₂	1	200	6	94.21	0.39	4.97	0.44
5% NO ₂	0.6	120	6	92.77	0.62	5.66	0.53
5% NO ₂ flow	0.1	120	6	94.11	0.48	.91	0.51

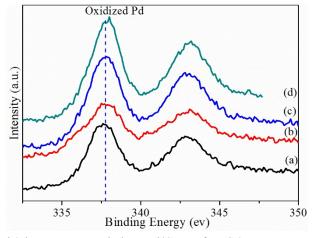

Figure S5. The recyclability of the re-dispersed catalyst.

Figure S6. STEM images of Pd/CNT after GO treatment with 40% O_2 under 1 MPa (a) at 120 $^{\circ}$ C for 6 h (b) at 200 $^{\circ}$ C for 6 h without reduction.

Figure S7. PSD patterns of Pd NPs of (a) 5% NO₂/He(0.6 MPa) without reduction, (b) with reduction, (c) 5% NO₂/He flow (ambient pressure) without reduction, (d) with reduction.

Figure S8. XPS Pd 3d spectra recorded on Pd/CNT after GO treatment at (a) 80 °C for 6 h, (b) 100 °C for 6 h, (c) 120 °C for 1 h, (d) 120 °C for 3 h without reduction.