Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Zirconium-cyanuric acid coordination polymer: Highly efficient catalyst for conversion of levulinic acid to γ-valerolactone

Zhimin Xue,^{a*} Jingyun Jiang,^b Guofeng Li,^b Wancheng Zhao,^b Jinfang Wang^b and Tiancheng Mu^{b*}

^aBeijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China. E-mail: <u>zmxue@bjfu.edu.cn</u>. ^bDepartment of Chemistry, Renmin University of China, Beijing 100872, China. E-mail: <u>tcmu@ruc.edu.cn</u>; <u>tcmu@chem.ruc.edu.cn</u>.

Catalyst characterization:

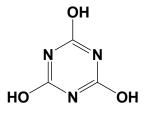
The scanning electron microscopy (SEM) measurements were performed on a Hitachi S-4800 Scanning Electron Microscope operated at 15 kV.

The transmission electron microscopy (TEM) images were obtained using a TEM JeoL-1011 with an accelerating voltage of 120 kV.

X-ray diffraction (XRD) measurements were conducted on an X-ray diffractometer (D/MAX-RC, Japan) operated at 40 kV and 200 mA with Cu K α (λ =0.154 nm) radiation.

N₂ adsorption-desorption isotherms were obtained using the Micromeritics ASAP 2020 V3.00 H (USA) surface area analyzer at 77 K at high vacuum.

The XPS measurements were carried out on an ESCAL Lab 220i-XL specrometer at a pressure of $\sim 3 \times 10^{-9}$ mbar (1 mbar=100 Pa) using Al K α as the excitation source (*hv*=1486.6 eV) and operated at 15 kV and 20 mA. The binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon.


The contents of Zr in Zr-CA and the concentration of Zr in the reaction solution were determined by ICP-AES (VISTA-MPX). The content of C and N in Zr-CA were obtained from elemental analysis by using the FLASH EA1112 analyzer.

FT-IR spectra were recorded on Bruker Tensor 27 IR spectrometer.

Temperature-programmed desorption of carbon dioxide (CO₂-TPD) was performed on Micromeritics' AutoChem 2950 HP Chemisorption Analyzer. In the experiment, the catalyst was charged into the quartz reactor, and the temperature was increased from room temperature to 150 °C at a rate of 10 °C/min under a flow of He (50 cm³/min), and then the catalyst was kept at 150 °C for 4 h. After that, the temperature was decreased to 60 °C. CO₂ (50 cm³/min) was pulsed into the reactor at 60 °C under a flow of He (10 cm³/min) until the basic sites were saturated with CO₂. The adsorbed CO₂ was removed by a flow of He (50 cm³/min). When the baseline was stable, the temperature was increased from 60 °C to 500 °C at a rate of 10 °C/min.

Temperature-programmed desorption of ammonia (NH₃-TPD) was performed on Micromeritics' AutoChem 2950 HP Chemisorption Analyzer. The catalysts were charged into the quartz reactor, and the temperature was increased from room temperature to 150 °C at a rate of 10 °C/min under a flow of He (50 cm³/min), and then the catalyst was kept at 150 °C for 4 h. After that, the temperature was decreased to 60 °C. NH₃/He (10/90, 50 cm³/min) was pulsed

into the reactor at 60 °C under a flow of He (10 cm³/min) until the acid sites were saturated with NH₃. The adsorbed NH₃ was removed by a flow of He (50 cm³/min). When the baseline was stable, the temperature was increased from 60 °C to 500 °C at a rate of 10 °C/min.

Scheme S1. The structure of cyanuric acid.

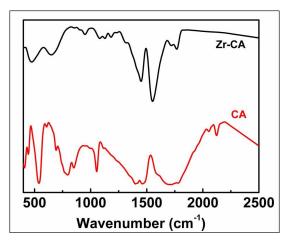


Figure S1. The FT-IR spectra of Zr-CA and CA.

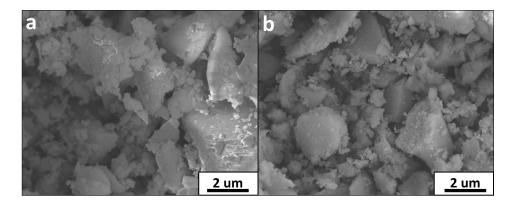


Figure S2. SEM images of other metal-CA catalysts. Zn-CA (a) and Sn-CA (b).

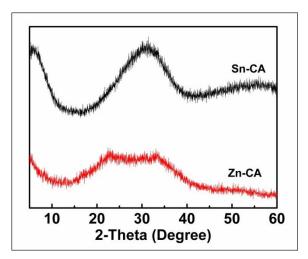


Figure S3. XRD patterns of other metal-CA catalysts. These XRD patterns indicated that the metal-CA catalysts prepared were poorly ordered and amorphous. At the same time, their crystallinity was very low.

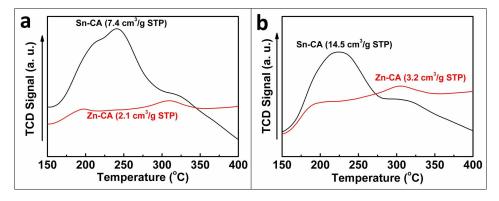
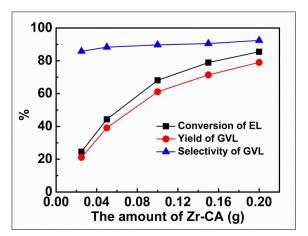
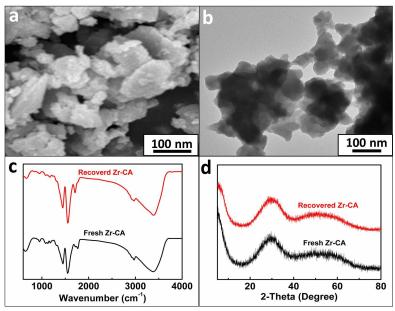




Figure S4. NH₃-TPD (a) and CO₂-TPD (b) examinations for Sn-CA and Zn-CA.

Figure S5. The influence of the Zr-CA amount on the TH reaction. Reaction conditions: EL, 1 mmol; isopropanol, 6 g; reaction time, 4 h; reaction temperature, 130 °C; a stainless reactor of 15 mL.

Figure S6. The characterization of the Zr-CA after reused for five times. SEM image (a), TEM image (b), FT-IR spectrum (c), and XRD pattern (d).

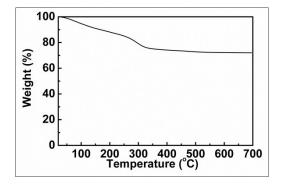
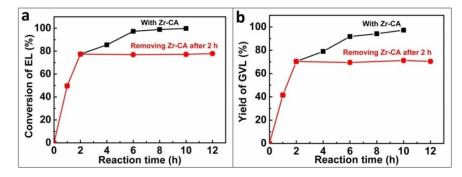



Figure S7. Thermogram of the prepared Zr-CA.

Figure S8. Time-conversion (a) and time-yield (b) plots for transfer hydrogention reaction of EL with Zr-CA (Black line) or removing Zr-CA after 2h (Red line). Reaction conditions: EL 1 mmol; isopropanol 6 g; Zr-CA 0.2 g; reaction time 10 h; reaction temperature, 130 °C.

Entry	Sample ^a	BET surface area (m ² /g) ^b	Pore volume (cm ³ /g) ^c	Pore diameter (nm) ^d
1	Zr-CA	108	0.13	3.5
2	Sn-CA	104	0.14	3.2
3	Zn-CA	125	0.11	3.0
4 ^e	Zr-CA	102	0.11	2.8
5	ZrO_2	21	0.01	0.53

Table S1. Properties of other metal (Zr, Sn, Zn)-CA catalysts.

^aThe samples were degassed at 120 °C for 24 h. ^bSurface area based on multipoint BET method. ^cPore volume based on BJH method. ^dPore diameter based on BJH method. ^eThe Zr-CA was the recovered one after reused for five times.

Table S2. The influence of the isopropanol/EL mole ratio on the TH of EL to GVL.^a

Entry	Isopropanol/EL mole ratio	Conversion of EL	Yield of	Selectivity of
		(%) ^b	GVL (%) ^b	GVL (%) ^c
1	1:1	38.3	21.8	56.9
2	1:5	66.4	46.9	70.6
3	1:10	80	61.8	77.3
4	1:17	86.7	72.3	83.4
5	1:33	88.5	77.7	87.8
6	1:67	89.6.	81.8	91.2
7	1:100	89.3	82.1	91.9

^aReaction conditions: a stainless reactor of 15 mL, 0.2 g catalyst, 1 mmol EL. ^bConversion and GVL yield were determined by GC. ^cThe other products were mainly isopropyl levulinate by transesterification with minute by-products from aldol condensation between EL and in-situ generated acetone in entries 1-5.

Table S3. The contents of various elements on the surface of Zr-CA determined by XPS examination.

Element	Content of various elements on the surface (Atomic%) ^a		
Element -	Fresh Zr-CA	Spent Zr-CA	
Zr	9.56	9.4	
Ν	1.12	0.93	
С	54.36	54.22	
Ο	34.96	35.45	