Supporting Information

2-Phenylbenzothiazole Conjugated with Cyclopentadienyl Tricarbonyl [CpM(CO)₃] (M = Re, ^{99m}Tc) Complexes as Potential Imaging Probes for β-Amyloid Plaques

Jianhua Jia[†], Mengchao Cui^{*,†}, Jiapei Dai[‡], Boli Liu[†]

Contents:

- 1. Purity and retention time of key target compounds
- In vitro autoradiography on brain sections of normal mice for complexes [^{99m}Tc]20 –
 23
- 3. *In vitro* autoradiography on brain section of AD patient for complex [^{99m}Tc]**22**
- 4. Biodistribution experiments of complexes $[^{99m}Tc]20 23$
- 5. The absorption and fluorescence spectra of rhenium complexes 20 23
- 6. Crystal data
- 7. ¹H-NMR, ¹³C-NMR, MS and HRMS data of synthesized compounds

1. Purity and retention time of key target compounds

Compd	Flow rate (mL/min)	Mobile phase (ACN%)	Agela Technologies, 5μm	Retention time (RT, min)	Purity (%)
20	1	80	$4.6 \times 250 \text{ mm}$	8.07	98.22
[^{99m} Tc]20	1	80	$4.6 \times 250 \text{ mm}$	9.08	99.75
21	1	80	4.6 × 250 mm	10.09	90.48
[^{99m} Tc]21	1	80	4.6 × 250 mm	11.50	99.27
22	1	80	4.6 × 250 mm	12.09	98.26
[^{99m} Tc]22	1	80	4.6 × 250 mm	13.45	99.43
23	1	80	4.6 × 250 mm	12.96	97.55
[^{99m} Tc]23	1	80	4.6 × 250 mm	14.47	98.03

 Table S1. Purity and retention time of key target compounds

- 2. In vitro autoradiography on brain sections of normal mice for complexes [99mTc]20 -
 - А \mathbf{B} С D E F G F

23

Figure S1. *In vitro* autoradiography of [^{99m}Tc]**20** (A), [^{99m}Tc]**21** (C), [^{99m}Tc]**22** (E) and [^{99m}Tc]**23** (G) on brain sections of wild-type (C57BL6, 12-month-old, female). The same sections were confirmed by fluorescence staining using Thioflavin-S (B, D, F and H).

- \mathbf{A}
- 3. In vitro autoradiography on brain sections of AD patient for complex $[^{99m}Tc]$ 22

Figure S2. *In vitro* autoradiography of [^{99m}Tc]**22** (A) on brain sections of an AD patient (68-year-old, female, frontal lobe). The presence and distribution of cerebrovascular amyloids in the section were confirmed by fluorescence staining using Thioflavin-S (B).

4. Biodistribution experiments with normal mice of $[^{99m}Tc]$ **20 - 23**^a

Table S2. Biodistribution in normal mice (ICR, 5 weeks, 22 - 25 g, male) after i.v.

Organ	2 min	10 min	30 min	60 min
		[^{99m} Tc] 20		
Blood	2.96 ± 0.85	1.20 ± 0.17	0.66 ± 0.16	0.56 ± 0.12
Brain	0.50 ± 0.10	0.48 ± 0.09	0.28 ± 0.10	0.18 ± 0.07
Heart	10.03 ± 2.11	5.41 ± 0.83	2.30 ± 0.68	1.07 ± 0.36
Liver	33.61 ± 2.77	47.37 ± 5.54	45.58 ± 11.16	40.37 ± 7.78
Spleen	11.00 ± 2.56	11.52 ± 1.69	4.86 ± 0.60	2.44 ± 0.56
Lung	65.84 ± 12.78	53.52 ± 13.83	27.78 ± 5.78	15.58 ± 4.73
Kidney	9.38 ± 1.01	9.08 ± 0.96	5.84 ± 1.33	4.04 ± 0.64
Pancreas	2.27 ± 0.96	2.74 ± 0.43	1.31 ± 0.33	0.76 ± 0.22
muscle	1.52 ± 0.21	0.38 ± 0.03	0.26 ± 0.06	0.19 ± 0.04
Stomach ^b	0.63 ± 0.09	1.42 ± 0.76	3.04 ± 1.99	4.75 ± 3.20
Intestine ^b	2.26 ± 0.12	26.51 ± 2.93	49.06 ± 3.41	48.62 ± 5.09
		[^{99m} Tc] 21		
Blood	5.84 ± 0.75	2.19 ± 0.63	1.23 ± 0.27	0.76 ± 0.10
Brain	0.36 ± 0.07	0.34 ± 0.10	0.29 ± 0.08	0.19 ± 0.02
Heart	17.65 ± 3.20	15.15 ± 2.76	5.78 ± 1.07	2.42 ± 0.49
Liver	53.56 ± 6.60	70.67 ± 10.20	67.61 ± 15.64	53.02 ± 10.28
Spleen	13.68 ± 2.91	13.85 ± 3.39	10.82 ± 2.84	2.21 ± 0.17
Lung	14.39 ± 3.40	6.30 ± 0.77	3.42 ± 1.14	1.41 ± 0.24
Kidney	13.04 ± 1.85	10.94 ± 1.61	6.36 ± 1.01	3.52 ± 0.46
Pancreas	4.21 ± 0.63	3.53 ± 1.08	2.41 ± 0.68	1.17 ± 0.32
muscle	2.81 ± 0.36	2.93 ± 0.61	1.79 ± 0.45	1.20 ± 0.21
Stomach ^b	0.88 ± 0.19	1.40 ± 0.30	1.66 ± 0.28	1.52 ± 0.43
Intestine ^b	3.55 ± 0.47	6.18 ± 1.63	11.02 ± 1.24	12.29 ± 2.57
		[^{99m} Tc] 22		
Blood	3.28 ± 0.28	0.75 ± 0.08	0.54 ± 0.06	0.51 ± 0.07
Brain	0.26 ± 0.04	0.17 ± 0.02	0.15 ± 0.01	0.11 ± 0.02
Heart	14.96 ± 2.51	5.16 ± 0.77	2.15 ± 0.32	1.19 ± 0.11
Liver	46.18 ± 3.47	40.82 ± 6.26	48.37 ± 4.19	53.51 ± 2.41

injection of [^{99m}Tc]**20 - 23**^a

Spleen	10.79 ± 2.00	3.02 ± 0.37	1.68 ± 0.21	1.23 ± 0.37
Lung	11.96 ± 2.73	2.22 ± 0.50	1.10 ± 0.22	0.85 ± 0.06
Kidney	14.46 ± 2.34	8.74 ± 1.41	4.78 ± 0.57	3.78 ± 0.41
Pancreas	3.99 ± 0.67	2.20 ± 0.28	0.95 ± 0.45	0.69 ± 0.09
muscle	2.76 ± 0.37	1.61 ± 0.19	1.18 ± 0.22	1.03 ± 0.15
Stomach ^b	0.81 ± 0.12	0.73 ± 0.14	0.90 ± 0.09	1.46 ± 0.27
Intestine ^b	3.69 ± 0.43	5.06 ± 1.19	11.61 ± 1.54	19.80 ± 2.37
		[^{99m} Tc] 23		
Blood	9.56 ± 1.52	1.27 ± 0.14	0.68 ± 0.28	1.00 ± 0.12
Brain	0.37 ± 0.08	0.12 ± 0.01	0.11 ± 0.02	0.14 ± 0.03
Heart	19.25 ± 3.91	11.98 ± 1.72	6.80 ± 1.38	4.68 ± 0.73
Liver	53.74 ± 6.25	59.09 ± 7.59	57.52 ± 8.62	73.62 ± 6.65
Spleen	15.62 ± 2.57	5.90 ± 0.72	3.22 ± 0.60	2.20 ± 0.37
Lung	28.30 ± 5.09	4.35 ± 0.76	1.94 ± 0.24	1.74 ± 0.25
Kidney	17.79 ± 3.07	11.86 ± 1.33	7.29 ± 2.06	5.91 ± 0.96
Pancreas	3.25 ± 0.49	2.77 ± 0.57	1.57 ± 0.56	1.43 ± 0.18
muscle	2.78 ± 0.81	2.16 ± 0.33	1.76 ± 0.29	1.70 ± 0.30
Stomach ^b	1.26 ± 0.41	1.56 ± 0.39	2.01 ± 0.32	3.20 ± 0.83
Intestine ^b	4.26 ± 0.63	5.59 ± 0.64	10.02 ± 2.92	23.38 ± 5.44

^a Expressed as % injected dose per gram. Average for 5 mice ± standard deviation.

^b Expressed as % injected dose per organ.

5. The absorption and fluorescence spectra of rhenium complexes 20 - 23

Figure S3. Absorption spectra of rhenium complexes 20 -23 (10 μ M) in ethanol.

Figure S4. The excitation and emission spectra of rhenium complexes 20 -23 (10 μ M) in ethanol.

6. Crystal data

	Atomic parameters					
Atom Ox	. Wyck	Site S.O.F.	x/a	y/b	z/c	U [Ų]
Re1	1a	1	0.92660(2)	0.27630(1)	-0.02164(1)	
S1	1a	1	1.00842(14)	0.83614(8)	0.56351(6)	
N1	1a	1	0.5616(4)	0.1577(3)	0.1324(2)	
H1N	1a	1	0.643(6)	0.168(4)	0.155(3)	0.011(11)
N2	1a	1	1.0992(5)	0.8214(3)	0.7253(2)	
N3	1a	1	1.3668(5)	1.3275(3)	0.7724(3)	
01	1a	1	0.4266(4)	0.1150(3)	-0.0044(2)	
02	1a	1	0.7268(4)	0.4378(2)	0.5423(2)	
03	1a	1	1.2608(5)	0.4043(3)	0.0823(3)	
04	1a	1	0.9834(6)	0.4070(3)	-0.1705(3)	
05	1a	1	0.6978(6)	0.4178(3)	0.0774(3)	
C1	1a	1	0.8970(5)	0.1283(3)	0.0401(3)	
H1	1a	1	0.92250	0.13250	0.10220	0.0250
C2	1a	1	1.0171(5)	0.1201(3)	-0.0303(3)	
H2	1a	1	1.13680	0.11770	-0.02310	0.0300
C3	1a	1	0.9279(5)	0.1163(3)	-0.1123(3)	
H3	1a	1	0.97720	0.11120	-0.16980	0.0300
C4	1a	1	0.7507(5)	0.1214(3)	-0.0940(3)	
H4	1a	1	0.66120	0.12000	-0.13700	0.0260
C5	1a	1	0.7322(5)	0.1289(3)	0.0004(2)	
C6	1a	1	0.5606(5)	0.1337(3)	0.0429(3)	
C7	1a	1	0.3989(5)	0.1638(3)	0.1786(3)	
H7A	1a	1	0.31360	0.09680	0.16040	0.0290
H7B	1a	1	0.34860	0.22010	0.16050	0.0290
C8	1a	1	0.4302(5)	0.1861(3)	0.2798(3)	
H8A	1a	1	0.49930	0.13710	0.29630	0.0290
H8B	1a	1	0.31630	0.17280	0.30850	0.0290
C9	1a	1	0.5260(6)	0.2981(3)	0.3169(3)	
H9A	1a	1	0.44900	0.34670	0.30910	0.0290
H9B	1a	1	0.63100	0.31520	0.28180	0.0290
C10	1a	1	0.5813(6)	0.3150(3)	0.4161(3)	
H10A	1a	1	0.47670	0.29890	0.45180	0.0290
H10B	1a	1	0.65860	0.26670	0.42450	0.0290
C11	1a	1	0.6763(6)	0.4268(3)	0.4494(3)	
H11A	1a	1	0.78110	0.44360	0.41400	0.0290
H11B	1a	1	0.59900	0.47550	0.44240	0.0290
C12	1a	1	0.9507(5)	0.7145(3)	0.5938(3)	

C13	1a	1	0.8572(5)	0.6210(3)	0.5428(3)	
H13	1a	1	0.82000	0.61710	0.48230	0.0270
C14	1a	1	0.8206(5)	0.5339(3)	0.5839(3)	
C15	1a	1	0.8785(6)	0.5400(3)	0.6730(3)	
H15	1a	1	0.85300	0.47940	0.69970	0.0320
C16	1a	1	0.9721(6)	0.6332(3)	0.7222(3)	
H16	1a	1	1.01040	0.63670	0.78250	0.0310
C17	1a	1	1.0099(5)	0.7216(3)	0.6831(3)	
C18	1a	1	1.1059(5)	0.8891(3)	0.6720(3)	
C19	1a	1	1.1803(5)	1.0015(3)	0.6952(3)	
C20	1a	1	1.2760(5)	1.0451(3)	0.7763(3)	
H20	1a	1	1.29820	1.00010	0.81510	0.0240
C21	1a	1	1.3384(5)	1.1510(3)	0.8012(3)	
H21	1a	1	1.40430	1.17740	0.85630	0.0240
C22	1a	1	1.3071(5)	1.2217(3)	0.7467(3)	
C23	1a	1	1.2114(6)	1.1783(3)	0.6645(3)	
H23	1a	1	1.18920	1.22310	0.62540	0.0350
C24	1a	1	1.1498(6)	1.0708(3)	0.6405(3)	
H24	1a	1	1.08500	1.04350	0.58510	0.0330
C25	1a	1	1.3503(8)	1.3978(4)	0.7110(4)	
H25A	1a	1	1.41080	1.37830	0.65590	0.0480
H25B	1a	1	1.40270	1.47000	0.73950	0.0480
H25C	1a	1	1.22650	1.39240	0.69610	0.0480
C26	1a	1	1.4719(6)	1.3689(4)	0.8549(3)	
H26A	1a	1	1.40660	1.34670	0.90560	0.0410
H26B	1a	1	1.50020	1.44560	0.86410	0.0410
H26C	1a	1	1.58020	1.34240	0.85070	0.0410
C27	1a	1	1.1338(6)	0.3602(4)	0.0423(3)	
C28	1a	1	0.9637(6)	0.3598(4)	-0.1141(3))
C29	1a	1	0.7884(7)	0.3687(4)	0.0402(4)	
Cl1	1a	1	0.3167(2)	-0.01040(13) 0.41464(1 ₄	4)
CI2	1a	1	0.2387(2)	-0.22911(15	5) 0.32531(1 ⁴	4)
C59	1a	1	0.3730(9)	-0.1328(5)	0.4025(5)	
H59A	1a	1	0.49510	-0.12620	0.38340	0.0670
H59B	1a	1	0.36780	-0.15490	0.46170	0.0670
	I	Anisotropic	displaceme	ent paramete	ers, in Ų	
Atom	U 11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Re1	0.01791(9)	0.01831(9)	0.02425(9)	0.00111(5)	0.00001(6)	0.00432(6)
S1	0.0310(5)	0.0201(4)	0.0183(4)	0.0022(4)	-0.0035(4)	0.0042(3)
N1	0.0161(15)	0.0238(16)	0.0230(16)	0.0019(12)	-0.0009(12)	0.0019(13)
N2	0.0255(16)	0.0196(15)	0.0181(14)	0.0025(12)	-0.0020(12)	0.0019(12)

Atom	is 1,2	d 1,2 [?]	Atoms 1,2	2	d 1,2 [?]
		Select	ed geometr	ic information	ons	
C59	0.052(4)	0.056(4)	0.060(4)	0.019(3)	0.007(3)	0.009(3)
CI2	0.0548(10)	0.0539(9)	0.0861(13)	0.0060(8)	0.0077(9)	-0.0013(9)
Cl1	0.0626(10)	0.0425(8)	0.0921(13)	0.0059(7)	0.0068(9)	0.0218(9)
C29	0.034(2)	0.023(2)	0.047(3)	0.0047(18)	0.002(2)	0.002(2)
C28	0.034(2)	0.026(2)	0.030(2)	0.0001(17)	-0.0009(18)	0.0110(17)
C27	0.0228(19)	0.028(2)	0.031(2)	-0.0070(16)	-0.0039(16)	0.0003(17)
C26	0.034(2)	0.024(2)	0.039(2)	0.0013(18)	-0.0084(19)	-0.0048(18)
C25	0.055(3)	0.022(2)	0.043(3)	0.000(2)	-0.004(2)	0.012(2)
C24	0.033(2)	0.0235(19)	0.0232(19)	0.0011(16)	-0.0072(16)	0.0036(15)
C23	0.038(2)	0.025(2)	0.026(2)	0.0034(17)	-0.0051(17)	0.0093(16)
C22	0.0231(18)	0.0211(18)	0.0226(18)	0.0038(14)	0.0021(14)	0.0038(15)
C21	0.0173(16)	0.0221(18)	0.0206(17)	0.0025(13)	-0.0021(13)	0.0025(14)
C20	0.0187(16)	0.0238(18)	0.0191(16)	0.0056(14)	0.0004(13)	0.0074(14)
C19	0.0222(17)	0.0219(18)	0.0179(16)	0.0034(14)	0.0023(13)	0.0044(14)
C18	0.0190(16)	0.0223(18)	0.0190(16)	0.0043(14)	-0.0002(13)	0.0030(14)
C17	0.0192(16)	0.0209(17)	0.0198(17)	0.0036(14)	-0.0005(13)	0.0007(14)
C16	0.029(2)	0.0238(19)	0.0221(18)	0.0001(16)	-0.0041(15)	0.0058(15)
C15	0.030(2)	0.026(2)	0.0234(19)	0.0008(16)	-0.0001(16)	0.0088(16)
C14	0.0252(19)	0.0205(18)	0.0218(18)	0.0024(15)	0.0006(14)	0.0001(14)
C13	0.0249(18)	0.0215(18)	0.0215(18)	0.0041(15)	-0.0019(14)	0.0032(14)
C12	0.0226(17)	0.0215(17)	0.0177(16)	0.0050(14)	0.0007(13)	0.0026(14)
C11	0.0261(19)	0.0221(18)	0.0213(18)	0.0025(15)	-0.0009(15)	0.0002(15)
C10	0.0266(19)	0.0192(17)	0.0246(19)	0.0035(15)	-0.0004(15)	-0.0002(15)
C9	0.0266(19)	0.0206(18)	0.0237(18)	0.0036(15)	-0.0001(15)	0.0014(15)
C8	0.0225(18)	0.0246(19)	0.0230(18)	0.0010(15)	0.0017(14)	0.0016(15)
C7	0.0187(17)	0.0267(19)	0.0233(18)	0.0011(15)	-0.0006(14)	0.0005(15)
C6	0.0157(16)	0.0186(16)	0.0252(18)	0.0025(13)	0.0003(13)	0.0077(14)
C5	0.0171(15)	0.0162(16)	0.0190(16)	0.0021(12)	-0.0018(13)	-0.0009(13)
C4	0.0175(16)	0.0239(18)	0.0224(18)	0.0045(14)	0.0002(13)	0.0014(14)
C3	0.0207(18)	0.0243(19)	0.028(2)	0.0047(15)	0.0060(15)	0.0026(16)
C2	0.0173(17)	0.0231(19)	0.033(2)	0.0032(14)	0.0005(15)	0.0038(16)
C1	0.0187(16)	0.0207(17)	0.0228(18)	0.0034(13)	-0.0028(14)	0.0036(14)
05	0.047(2)	0.037(2)	0.086(3)	0.0190(19)	0.018(2)	-0.005(2)
04	0.056(3)	0.046(2)	0.047(2)	0.0013(19)	-0.0011(19)	0.0255(19)
03	0.0341(19)	0.050(2)	0.057(2)	-0.0122(17)	-0.0085(17)	0.002(2)
02	0.0356(17)	0.0213(14)	0.0230(14)	-0.0005(12)	-0.0038(12)	0.0023(11)
01	0.0165(13)	0.0431(18)	0.0245(14)	0.0052(12)	-0.0013(11)	0.0062(13)
N3	0.037(2)	0.0187(16)	0.0329(19)	0.0013(14)	-0.0064(16)	0.0058(14)

	Selected geometric informations				
Atoms 1,2	d 1,2 [?]	Atoms 1,2	d 1,2 [
Re1-C27	1.915(4)	C8—H8B	0.9900		

Re1—C29	1.919(5)	C9-C10	1.525(6)
Re1—C28	1.924(4)	С9—Н9А	0.9900
Re1—C1	2.294(4)	С9—Н9В	0.9900
Re1—C5	2.296(4)	C10-C11	1.510(5)
Re1—C2	2.305(4)	C10-H10A	0.9900
Re1—C4	2.310(4)	C10-H10B	0.9900
Re1—C3	2.311(4)	C11—H11A	0.9900
S1-C12	1.729(4)	C11—H11B	0.9900
S1-C18	1.768(4)	C12-C13	1.395(5)
N1-C6	1.334(5)	C12-C17	1.408(5)
N1-C7	1.464(5)	C13-C14	1.389(6)
N1—H1N	0.70(5)	C13—H13	0.9500
N2-C18	1.305(5)	C14—C15	1.404(6)
N2-C17	1.401(5)	C15-C16	1.383(6)
N3-C22	1.369(5)	C15—H15	0.9500
N3-C26	1.448(6)	C16—C17	1.387(6)
N3-C25	1.454(6)	C16—H16	0.9500
01—C6	1.224(4)	C18-C19	1.463(5)
02—C14	1.372(5)	C19—C24	1.398(6)
02—C11	1.433(5)	C19—C20	1.400(5)
O3—C27	1.152(5)	C20-C21	1.371(5)
O4—C28	1.140(6)	C20—H20	0.9500
O5—C29	1.141(6)	C21-C22	1.411(5)
C1-C5	1.424(5)	C21—H21	0.9500
C1-C2	1.427(6)	C22–C23	1.414(6)
C1—H1	0.9500	C23–C24	1.388(6)
C2—C3	1.411(6)	C23—H23	0.9500
C2—H2	0.9500	C24—H24	0.9500
C3-C4	1.428(5)	C25—H25A	0.9800
С3—Н3	0.9500	C25—H25B	0.9800
C4—C5	1.424(5)	C25—H25C	0.9800
C4—H4	0.9500	C26—H26A	0.9800
C5—C6	1.498(5)	C26—H26B	0.9800
C7—C8	1.517(6)	C26—H26C	0.9800
С7—Н7А	0.9900	Cl1-C59	1.746(7)
С7—Н7В	0.9900	Cl2—C59	1.733(7)
C8—C9	1.523(6)	C59—H59A	0.9900
C8—H8A	0.9900	С59—Н59В	0.9900

Atoms 1,2,3	Angle 1,2,3 [iã]	Atoms 1,2,3	Angle 1,2,3 [iã]
C27-Re1-C29	90.8(2)	C9-C8-H8B	108.900

C27—Re1—C28	89.9(2)	H8A—C8—H8B	107.700
C29—Re1—C28	89.6(2)	C8-C9-C10	112.9(3)
C27—Re1—C1	100.48(17)	C8-C9-H9A	109.000
C29—Re1—C1	110.31(19)	C10—C9—H9A	109.000
C28—Re1—C1	157.18(18)	C8-C9-H9B	109.000
C27—Re1—C5	133.85(17)	C10-C9-H9B	109.000
C29—Re1—C5	92.92(18)	Н9А—С9—Н9В	107.800
C28—Re1—C5	136.11(16)	C11-C10-C9	110.8(3)
C1—Re1—C5	36.14(13)	C11-C10-H10A	109.500
C27—Re1—C2	94.79(18)	C9-C10-H10A	109.500
C29—Re1—C2	146.4(2)	C11-C10-H10B	109.500
C28—Re1—C2	123.38(19)	C9-C10-H10B	109.500
C1—Re1—C2	36.14(15)	H10A-C10-H10B	108.100
C5—Re1—C2	60.03(14)	O2-C11-C10	108.4(3)
C27—Re1—C4	154.54(18)	02-C11-H11A	110.000
C29-Re1-C4	110.77(18)	C10-C11-H11A	110.000
C28-Re1-C4	103.22(17)	O2-C11-H11B	110.000
C1—Re1—C4	60.11(14)	C10-C11-H11B	110.000
C5—Re1—C4	36.03(13)	H11A—C11—H11B	108.400
C2—Re1—C4	59.77(14)	C13-C12-C17	122.2(4)
C27—Re1—C3	121.57(18)	C13-C12-S1	128.4(3)
C29—Re1—C3	146.75(18)	C17-C12-S1	109.4(3)
C28—Re1—C3	97.32(18)	C14-C13-C12	117.6(4)
C1—Re1—C3	59.93(15)	C14-C13-H13	121.200
C5—Re1—C3	59.98(14)	C12-C13-H13	121.200
C2—Re1—C3	35.58(15)	02-C14-C13	123.7(4)
C4—Re1—C3	35.99(14)	02-C14-C15	115.5(4)
C12—S1—C18	89.74(18)	C13-C14-C15	120.8(4)
C6—N1—C7	120.5(3)	C16-C15-C14	120.8(4)
C6—N1—H1N	117.(4)	C16-C15-H15	119.600
C7—N1—H1N	123.(4)	C14-C15-H15	119.600
C18—N2—C17	111.1(3)	C15-C16-C17	119.7(4)
C22—N3—C26	120.0(4)	C15-C16-H16	120.200
C22—N3—C25	120.4(4)	C17-C16-H16	120.200
C26—N3—C25	118.8(4)	C16-C17-N2	125.9(3)
C14—02—C11	116.9(3)	C16-C17-C12	119.0(4)
C5-C1-C2	107.7(3)	N2-C17-C12	115.0(4)
C5—C1—Re1	72.0(2)	N2-C18-C19	126.1(3)
C2—C1—Re1	72.3(2)	N2-C18-S1	114.7(3)
C5—C1—H1	126.200	C19-C18-S1	119.2(3)
C2-C1-H1	126.200	C24-C19-C20	117.1(4)

Re1—C1—H1	121.300	C24-C19-C18	121.6(3)
C3–C2–C1	108.3(3)	C20-C19-C18	121.2(3)
C3—C2—Re1	72.4(2)	C21-C20-C19	121.8(4)
C1-C2-Re1	71.5(2)	C21-C20-H20	119.100
C3-C2-H2	125.800	C19-C20-H20	119.100
C1-C2-H2	125.800	C20-C21-C22	121.5(3)
Re1—C2—H2	121.900	C20-C21-H21	119.300
C2-C3-C4	108.2(4)	C22-C21-H21	119.300
C2—C3—Re1	72.0(2)	N3-C22-C21	121.4(4)
C4—C3—Re1	72.0(2)	N3-C22-C23	121.5(4)
C2-C3-H3	125.900	C21-C22-C23	117.1(4)
C4-C3-H3	125.900	C24-C23-C22	120.5(4)
Re1—C3—H3	121.900	C24-C23-H23	119.700
C5–C4–C3	107.7(3)	C22-C23-H23	119.700
C5—C4—Re1	71.4(2)	C23-C24-C19	122.0(4)
C3—C4—Re1	72.1(2)	C23-C24-H24	119.000
C5—C4—H4	126.200	C19-C24-H24	119.000
C3—C4—H4	126.200	N3-C25-H25A	109.500
Re1—C4—H4	122.100	N3-C25-H25B	109.500
C1-C5-C4	108.1(3)	H25A—C25—H25B	109.500
C1-C5-C6	130.0(3)	N3-C25-H25C	109.500
C4—C5—C6	121.8(3)	H25A—C25—H25C	109.500
C1-C5-Re1	71.9(2)	H25B-C25-H25C	109.500
C4—C5—Re1	72.5(2)	N3-C26-H26A	109.500
C6—C5—Re1	122.4(3)	N3-C26-H26B	109.500
01-C6-N1	122.7(4)	H26A—C26—H26B	109.500
01—C6—C5	119.9(4)	N3-C26-H26C	109.500
N1-C6-C5	117.4(3)	H26A—C26—H26C	109.500
N1-C7-C8	111.1(3)	H26B—C26—H26C	109.500
N1—C7—H7A	109.400	03-C27-Re1	175.2(5)
C8—C7—H7A	109.400	O4-C28-Re1	178.1(4)
N1—C7—H7B	109.400	05-C29-Re1	175.4(5)
С8—С7—Н7В	109.400	Cl2-C59-Cl1	113.5(4)
H7A—C7—H7B	108.000	Cl2—C59—H59A	108.900
С7—С8—С9	113.4(4)	CI1-C59-H59A	108.900
C7—C8—H8A	108.900	CI2—C59—H59B	108.900
C9—C8—H8A	108.900	CI1-C59-H59B	108.900
C7—C8—H8B	108.900	H59A—C59—H59B	107.700

Atoms 1,2,3,4 Tors. an. 1,2,3,4 [iã] Atoms 1,2,3,4 Tors. an. 1,2,3,4 [iã]

C27-Re1-C1-C5 160.3(2)

C28-Re1-C5-C6 -87.4(4)

C29-Re1-C1-C5	65.5(3)	C1-Re1-C5-C6	126.4(4)
C28-Re1-C1-C5	-84.1(5)	C2-Re1-C5-C6	164.2(3)
C2-Re1-C1-C5	-116.0(3)	C4-Re1-C5-C6	-117.1(4)
C4-Re1-C1-C5	-37.4(2)	C3-Re1-C5-C6	-154.5(3)
C3-Re1-C1-C5	-79.2(2)	C7-N1-C6-01	-0.7(6)
C27-Re1-C1-C2	-83.7(3)	C7-N1-C6-C5	180.0(3)
C29-Re1-C1-C2	-178.5(3)	C1-C5-C6-01	-167.1(4)
C28-Re1-C1-C2	31.9(5)	C4-C5-C6-01	11.3(6)
C5-Re1-C1-C2	116.0(3)	Re1-C5-C6-01	99.9(4)
C4-Re1-C1-C2	78.6(2)	C1-C5-C6-N1	12.2(6)
C3-Re1-C1-C2	36.8(2)	C4-C5-C6-N1	-169.4(4)
C5-C1-C2-C3	0.3(5)	Re1-C5-C6-N1	-80.8(4)
Re1-C1-C2-C3	-63.5(3)	C6-N1-C7-C8	176.8(4)
C5—C1—C2—Re1	63.8(3)	N1-C7-C8-C9	72.3(5)
C27-Re1-C2-C3	-141.8(3)	C7-C8-C9-C10	-171.2(4)
C29-Re1-C2-C3	119.5(4)	C8-C9-C10-C11	179.7(4)
C28-Re1-C2-C3	-48.8(3)	C14-02-C11-C10	177.8(4)
C1-Re1-C2-C3	117.0(3)	C9-C10-C11-O2	-179.4(3)
C5-Re1-C2-C3	79.3(2)	C18-S1-C12-C13	178.1(4)
C4-Re1-C2-C3	37.4(2)	C18-S1-C12-C17	-0.5(3)
C27-Re1-C2-C1	101.2(3)	C17-C12-C13-C14	1.1(6)
C29-Re1-C2-C1	2.6(4)	S1-C12-C13-C14	-177.3(3)
C28-Re1-C2-C1	-165.8(2)	C11-02-C14-C13	4.8(6)
C5-Re1-C2-C1	-37.7(2)	C11-02-C14-C15	-175.7(4)
C4-Re1-C2-C1	-79.6(2)	C12-C13-C14-O2	178.5(4)
C3-Re1-C2-C1	-117.0(3)	C12-C13-C14-C15	-1.0(6)
C1-C2-C3-C4	-0.3(5)	02-C14-C15-C16	-179.0(4)
Re1-C2-C3-C4	-63.3(3)	C13-C14-C15-C16	0.5(7)
C1-C2-C3-Re1	62.9(3)	C14-C15-C16-C17	-0.2(7)
C27-Re1-C3-C2	46.3(3)	C15-C16-C17-N2	178.3(4)
C29-Re1-C3-C2	-118.7(4)	C15-C16-C17-C12	0.4(6)
C28-Re1-C3-C2	140.7(3)	C18-N2-C17-C16	-176.7(4)
C1-Re1-C3-C2	-37.4(2)	C18-N2-C17-C12	1.3(5)
C5-Re1-C3-C2	-79.4(3)	C13-C12-C17-C16	-0.8(6)
C4-Re1-C3-C2	-116.9(4)	S1-C12-C17-C16	177.8(3)
C27-Re1-C3-C4	163.2(3)	C13-C12-C17-N2	-179.0(4)
C29-Re1-C3-C4	-1.8(5)	S1-C12-C17-N2	-0.3(4)
C28-Re1-C3-C4	-102.4(3)	C17-N2-C18-C19	176.4(4)
C1-Re1-C3-C4	79.5(3)	C17-N2-C18-S1	-1.7(4)
C5—Re1—C3—C4	37.5(2)	C12-S1-C18-N2	1.3(3)
C2-Re1-C3-C4	116.9(4)	C12-S1-C18-C19	-176.9(3)

C2-C3-C4-C5	0.3(5)	N2-C18-C19-C24	-166.6(4)
Re1-C3-C4-C5	-63.0(3)	S1-C18-C19-C24	11.4(6)
C2-C3-C4-Re1	63.3(3)	N2-C18-C19-C20	9.3(6)
C27-Re1-C4-C5	81.5(5)	S1-C18-C19-C20	-172.7(3)
C29-Re1-C4-C5	-64.6(3)	C24-C19-C20-C21	-0.4(6)
C28-Re1-C4-C5	-159.3(2)	C18-C19-C20-C21	-176.5(4)
C1-Re1-C4-C5	37.5(2)	C19-C20-C21-C22	0.9(6)
C2-Re1-C4-C5	79.5(2)	C26-N3-C22-C21	3.1(7)
C3-Re1-C4-C5	116.4(3)	C25-N3-C22-C21	173.0(4)
C27-Re1-C4-C3	-35.0(5)	C26-N3-C22-C23	-176.8(4)
C29-Re1-C4-C3	178.9(3)	C25-N3-C22-C23	-7.0(7)
C28-Re1-C4-C3	84.2(3)	C20-C21-C22-N3	178.8(4)
C1-Re1-C4-C3	-78.9(3)	C20-C21-C22-C23	-1.3(6)
C5-Re1-C4-C3	-116.4(3)	N3-C22-C23-C24	-179.0(4)
C2-Re1-C4-C3	-36.9(2)	C21-C22-C23-C24	1.1(7)
C2-C1-C5-C4	-0.1(4)	C22-C23-C24-C19	-0.5(7)
Re1-C1-C5-C4	63.9(3)	C20-C19-C24-C23	0.2(7)
C2-C1-C5-C6	178.5(4)	C18-C19-C24-C23	176.2(4)
Re1-C1-C5-C6	-117.5(4)	C29-Re1-C27-O3	129.(5)
C2—C1—C5—Re1	-64.0(3)	C28-Re1-C27-O3	-141.(5)
C3-C4-C5-C1	-0.1(4)	C1-Re1-C27-O3	18.(5)
Re1-C4-C5-C1	-63.5(3)	C5-Re1-C27-O3	34.(6)
C3-C4-C5-C6	-178.8(3)	C2-Re1-C27-O3	-18.(5)
Re1-C4-C5-C6	117.8(3)	C4-Re1-C27-O3	-20.(6)
C3—C4—C5—Re1	63.4(3)	C3-Re1-C27-O3	-43.(6)
C27-Re1-C5-C1	-27.4(3)	C27-Re1-C28-O4	152.(15)
C29-Re1-C5-C1	-121.3(3)	C29-Re1-C28-O4	-117.(15)
C28-Re1-C5-C1	146.2(3)	C1-Re1-C28-O4	34.(15)
C2-Re1-C5-C1	37.7(2)	C5-Re1-C28-O4	-23.(15)
C4-Re1-C5-C1	116.5(3)	C2-Re1-C28-O4	56.(15)
C3-Re1-C5-C1	79.0(2)	C4-Re1-C28-O4	-6.(15)
C27-Re1-C5-C4	-143.9(3)	C3-Re1-C28-O4	30.(15)
C29-Re1-C5-C4	122.2(3)	C27-Re1-C29-O5	-140.(7)
C28-Re1-C5-C4	29.7(4)	C28-Re1-C29-O5	130.(7)
C1-Re1-C5-C4	-116.5(3)	C1-Re1-C29-O5	-39.(7)
C2—Re1—C5—C4	-78.7(2)	C5—Re1—C29—O5	-6.(7)
C3—Re1—C5—C4	-37.4(2)	C2-Re1-C29-O5	-41.(7)
C27—Re1—C5—C6	99.0(3)	C4-Re1-C29-05	26.(7)
C29-Re1-C5-C6	5.2(3)	C3-Re1-C29-O5	27.(7)

7. ¹H-NMR, ¹³C-NMR, MS and HRMS data of synthesized compounds

¹H-NMR for compound **1**

MS for compound 1

¹H-NMR for compound **8**

MS for compound 8

¹H-NMR for compound **9**

MS for compound **9**

¹H-NMR for compound 10

MS for compound 10

¹H-NMR for compound **11**

MS for compound 11

¹H-NMR for compound **12**

MS for compound **12**

¹H-NMR for compound **13**

¹H-NMR for compound **14**

MS for compound 14

¹H-NMR for compound **15**

¹H-NMR for compound **16**

HRMS for compound 16

¹H-NMR for compound **17**

HRMS for compound 17

¹H-NMR for compound **18**

MS for compound 18

¹H-NMR for compound **19**

MS for compound 19

¹H-NMR for compound **20**


```
<sup>13</sup>C-NMR for compound 20
```


HRMS for compound 20

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd Electron Ions 3731 formula(e) evaluated with 12 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-70 N: 0-10 O: 0-10 S: 0-2 185Re: 0-1

JJH 179 6 (0.111) TOF MS ES+

00					676.0864	•						
-		674.0892										
%			675.	1000		677	.0990					
	673.95	674.5	010	675.	9447 67	6.4901	678.1 677.7266	1018	679.107	0	680.7709	
0	1.1.	674.00	675.0	10	676.00	677.	00 678.0	0	679.00	680.00	681.00	- 1102
inim axim	am : am :			5.0	3.0	-1. 50.	5					
ass		Calc. M	ass	mDa	PPM	DBE	i-FIT	Fo	ormula			
74.08	392	674.089 674.089 674.089 674.089 674.089	4 5 5 8	-0.2 0.2 -0.3 -0.3 0.4	-0.3 0.3 -0.4 -0.4 0.6	29. 23. 13. 26. 17.	0 4.9 0 6.0 0 160.0 0 9.8 0 39.0 0 102.4	000000000000000000000000000000000000000	30 H14 30 H22 L9 H23 34 H19 26 H23	N10 010 N6 09 S2 N9 03 S2 N 03 185 N3 05 S	185Re Re 185Re 🗸	
		674.089 674.088 674.090 674.090 674.090	6 2 2 3 6	-0.4 0.6 1.0 -1.0 -1.1 1.6	-0.6 0.9 1.5 -1.5 -1.6 2.4	32. 14. 8.0 22. 28. 42.	0 102.4 0 262.7 0 254.5 0 11.0 0 23.8 0 226.1	00000000	18 H18 18 H19 18 H27 27 H19 31 H18 12 H10	N4 07 S N9 08 18 N5 07 S2 N7 0 S N10 05 S N8 03	5Re 185Re 185Re 2	

¹H-NMR for compound **21**

¹³C-NMR for compound **21**

HRMS for compound 21

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd Electron Ions 3646 formula(e) evaluated with 14 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-70 N: 0-10 O: 0-10 S: 0-2 185Re: 0-1

JJH 177 32 (0.592) TOF MS ES+

100				70	04.1229						1.25e+004
-	702.	1219									
%			703.126	5		705.1	303				
1 .	701 9719			703 9460				706.1	325		
0		702.53	31	100.0400	704.5	269	705.5070		706.4062	707.1396	
	702.00)	703.00	704	.00	705.00		706.00		707.00	11/2
Minimum: Maximum:			5.0	3.0	-1.5						
			5.0	5.0	50.0						
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Form	nula			
702.1219	702.1	216	0.3	0.4	28.0	5.8	C33	H22	N10 05	S2	
	702.1	215	0.4	0.6	22.0	11.9	C29	H23	N7 O	S 185Re	
	702.1	223	-0.4	-0.6	37.0	67.8	C41	H18	N8 03	S	
	702.1	226	-0.7	-1.0	13.0	114.7	C24	H27	N3 010	185Re	
	702.1	209	1.0	1.4	32.0	41.1	C40	HZZ	N4 07	S	
	702.1	208	1 1	1.6	12.0	110 0	030	HZ3	N 03	185Re	
	702.1	207	1.2	1.7	29.0	0.2	C21	H2 /	N9 03	SZ 185Re	
	702.1	233	-1.4	-2.0	9.0	249 9	C17	127	NG OG	0 10EDo	
	702.1	203	1.6	2.3	23.0	0.4	C32	H26	NG 09	S LOJKE	
	702.1	235	-1.6	-2.3	12.0	66.2	C25	H31	N3 05	S2 18586	
	702.1	201	1.8	2.6	17.0	32.7	C28	H27	N3 05	S 185Re W	/
	702.1	199	2.0	2.8	14.0	174.0	C20	H23	N9 OB	185Re	
	702.1	240	-2.1	-3.0	18.0	69.3	C25	H23	N7 06	18580	

¹H-NMR for compound **22**

¹³C-NMR for compound **22**

HRMS for compound 22

Elemental Composition Report

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd Electron Ions 3701 formula(e) evaluated with 13 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-70 N: 0-10 O: 0-10 S: 0-2 185Re: 0-1

JJH 176 8 (0.148) TOF MS ES+

00			690	0982				2.438+00
	688.1060							
%-		689.1096			691.1133			
	688.539	2	689.9499	690.2297	7	692.1	277 692.4828 693.1335	
	688.00	689.00	690.0	00	691.00	692.00	693.00	m/2
nimum: ximum:		5.0	3.0	-1.5 50.0				
55	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
B.1060	688.1060 688.1058 688.1053 688.1053 688.1051 688.1051 688.1051 688.1051 688.1070 688.1046 688.1045 688.1043 688.1077 688.1077	0.0 0.2 -0.6 0.8 0.9 -1.0 1.4 1.5 1.7 -1.7	0.0 0.3 -0.9 1.0 1.2 1.3 -1.5 2.0 2.2 2.5 -2.5	28.0 22.0 37.0 32.0 13.0 29.0 13.0 29.0 13.0 14.0 9.0	3.8 0.4 20.3 13.8 13.9 1.0 14.5 1.1 2.5 24.0 36.8	C32 H20 C28 H21 C40 H16 C39 H20 C20 H25 C35 H21 C31 H16 C23 H25 C31 H24 C27 H25 C19 H21 C16 H25	N10 05 S2 N7 0 S 185Re N8 03 S N4 07 S N9 03 S2 185Re N 03 185Re N10 010 N3 010 185Re N6 09 S2 N3 05 S 185Re N9 08 S 185Re	,

¹H-NMR for compound **23**

¹³C-NMR for compound **23**

Page 1

HRMS for compound 23

olerance	ass Analysi = 3.0 PPM / ediction: Off	DBE: min	= -1.5, max =	50.0						
umber of	isotope peak	s used for i	-FIT = 2							
onoisotoni	c Mass Odd a	and Even Ele	ctron lons							
85 formula	a(e) evaluated	with 27 resu	Its within limits	(up to 50 clos	sest results t	for each ma	iss)			
ements Us	sed:		C. 0.0 1000							
0-45 H.	0-70 N. 0-11	0.0-10	5: U-2 185R6	2: 0-1						
H 173 23 (0	0.426)									
OF MS ES+										
0		718.13	329							1.86e+0
~										
1										
716	5.1364									
X6-			122223202020							
1			719.1453							
1		740 0400		720.1323						
0	716.3696	718.0162	718.3276						725.0909	
716	3.0 717.0	718.0	719.0	720.0	721.0	722.0	723.	0 724.0	725.0	m
nimum:				-1.5						
ximum:		5.0	3.0	50.0						
55	Calc. Mas	s mDa	PPM	DBE	i-FIT	Form	nula			
6.1364	716.1364	0.0	0.0	29.0	3.9	C33	H20	N10 010		
	716.1364	0.0	0.0	26.0	5.2	C37	H25	N 03 185Re		
	716.1365	-0.	-0.1	7.5	5.6	C23	H35	N2 OB S2	185Re	
	716.1365	-0	-0.1	13.0	3.7	C22	H29	N9 03 S2	185Re	
	716.1366	-0	-0.3	32.0	17.7	C41	H24	N4 07 S		
	716 1369	0.5	0.7	23.0	4.2	C33	H28	N6 09 S2		
	716 1369	-0.5	-0.7	13.5	6.0	C23	H27	N6 09 185R	e	
	716 1350	0.6	0.8	17.0	0.1	C29	H29	N3 05 S 1	85Re 🗸	
	716.1330	0.6	0.8	22.5	0.1	C28	H23	N10 S 185R	e	
	716 1371	-0.	-1.0	22.0	0.5	C30	H25	N7 O S 18	5Re	
	716 1356	0.9	1.1	16.5	0.2	C31	H31	06 S 185Re		
	716 1373	-0.0	-1.2	22 5	6.9	C21	H25	N9 08 185R	e	
	716.1373	-0.5	-1.3	20.0	0.9	035	H30	N3 010 S2		
	716.1352	1 2	1 7	20.0	14 0	034	H24	N10 05 S2		
	716.1351	1 3	1.8	8.0	9.0	039	H22	N/ 06 S		
	716,1351	1 3	1.8	26 5	3.6	021	833	NO 07 52	185Re	
	716,1378	-1.4	-2.0	12.5	2.2	035	123	NG 02 185R	e	
	716.1379	-1.5	-2.1	31.5	20.6	C43	HOE	N OP C	TADKe	
	716.1379	-1.5	-2.1	37.0	23.6	C43	120	N9 03 P		
	716.1346	1.8	2.5	23.5	2.8	C31	120	NG 00 00		
	716.1346	1.8	2.5	20.5	3.9	C35	831	0 00 32		
	716.1383	-1.9	-2.7	18.5	2.5	024	101	V 32 185Re		
	716.1345	1.9	2.7	42.0	30.2	C45	H16	NS 03 185	Re	
	716.1383	-1.9	-2.7	13.0	4.0	C25	H29	N3 010 105	D.e.	
	77.5 1 7.4 4					020	112.3	MO 010 185	EVE:	
	110.1344	2.0	2.8	17.5	0.4	0.27	6122	MG 04 0	0.0.0	