Supporting Information

Novel reactions of homodinuclear Ni_2 complexes $[Ni(RN_{Py}S_4)]_2$ with $Fe_3(CO)_{12}$ to give heterotrinuclear $NiFe_2$ and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases

Li-Cheng Song,* Meng Cao and Yong-Xiang Wang

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China **Contents:**

(1) Preparation of 2,6-bis(hydroxymethyl)-4-*i*-propylpyridine

(2) Preparation of 2,6-bis[(tosyloxy)methyl]-4-*i*-propylpyridine

- (2) Thermal decomposition experiment of 2a in refluxing CH₂Cl₂ in air.
- (3) Thermal decomposition experiments of 2b-2e in CH₂Cl₂ at room temperature under N₂.
- (4) Thermal decomposition experiments of 2b-2e in CH₂Cl₂ at room temperature in air.

- 4. Figures S1 and S2: Molecular structures of 2b and 3c
- 5. Figure S3: Plots of i_p versus $v^{1/2}$ for 2a

- 7. Figures S5 and S6: Overpotential determinations for 2a-2e
- 8. Figure S7: Plot of i_p versus $v^{1/2}$ for 3a
- 9. Figure S8: Cyclic voltammograms of 3b-3e with TFA
- 10. Figure S9: Overpotential determinations for 3a-3e
- 11. References

(1) Preparation of 2,6-bis(hydroxymethyl)-4-*i*-propylpyridine

This new precursor was prepared from the previously reported compound 2,6bis(methoxycarbonyl)-4-*i*-propylpyridine.¹ of А mixture consisting 2.6bis(methoxycarbonyl)-4-i-propylpyridine (2.373 g, 10 mmol), NaBH₄ (2.079 g, 55 mmol) and EtOH (100 mL) was stirred at 0 °C for 1 h, at room temperature for 1 h, and at reflux temperature for about 10 h until the fluorescence TLC analysis showed that the starting material 2,6-bis(methoxycarbonyl)-4-*i*-propylpyridine was completely consumed. To the resulting mixture was added acetone (20 mL) and then the mixture was refluxed for 1 h. After solvents were removed, a saturated aqueous Na₂CO₃ solution (20 mL) was added and then the mixture was refluxed for 1 h. After the mixture was cooled to room temperature and water (50 mL) was added, the mixture was extracted with ethyl acetate (50 mL \times 4) and the combined organic phase was dried over anhydrous MgSO₄. After removal of the drying agent and solvents, the residue was subjected to column chromatography on silica gel using MeOH/CH₂Cl₂ (v/v = 1:10) as an eluent to give 2,6-bis(hydroxymethyl)-4-*i*-propylpyridine (1.285 g, 71%) as a white solid, mp 73–75 °C. Anal. Calcd for C₁₀H₁₅NO₂: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.09; H, 8.03; N, 7.62. IR (KBr disk): 3283 (s), 2964 (s), 1611 (vs), 1085 (vs), 874 (s) cm^{-1.1}H NMR (400 MHz, CDCl₃): 1.18 (d, J = 6.8 Hz, 6H,

CH(CH₃)₂), 2.79–2.86 (m, 1H, CH(CH₃)₂), 4.63 (s, 4H, 2CH₂), 4.81 (br.s, 2H, 2OH), 7.04 (s, 2H, C₅H₂N), ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 23.1, 33.7 (CH(CH₃)₂), 64.5 (CH₂), 117.9, 159.0, 159.7 (C₆H₄) ppm. MS (ESI, CH₂Cl₂): m/z 182.2 [M⁺].

(2) Preparation of 2,6-bis[(tosyloxy)methyl]-4-i-propylpyridine

This new starting material was prepared from the above-prepared precursor by using a reported procedure with some modifications.² To a stirred mixture consisting of 2,6-bis(hydroxymethyl)-4-i-propylpyridine (1.813 g, 10 mmol), CH₂Cl₂ (60 mL), and 40 % aqueous KOH solution (60 mL), tosyl chloride (3.81 g, 20 mmol) was added. The mixture was stirred at 0 °C for 1 h and at room temperature for about 4 h until the fluorescence TLC analysis showed that the starting material 2,6bis(hydroxymethyl)-4-i-propylpyridine was completely consumed. After water (60 mL) was added, the resulting mixture was extracted with CH_2Cl_2 (60 mL×3) and then the combined organic phase was dried over anhydrous MgSO₄. After removal of the drying agent and solvents, the residue was recrystallized from CH₂Cl₂/hexane to give 2,6-bis[(tosyloxy)methyl]-4-i-propylpyridine (4.308 g, 88%) as a white solid, mp 59–61°C. Anal. Calcd for C₂₄H₂₇NO₆S₂: C, 58.88; H, 5.56; N, 2.86. Found: C, 58.81; H, 5.59; N, 2.96. IR (KBr disk): 2966 (m), 1609 (s), 1364 (vs), 1176 (vs), 834 (s), 554 (vs) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): 1.18 (d, J = 6.8 Hz, 6H, CH(CH₃)₂), 2.43 (s, 6H, 2C₆H₄CH₃), 2.82–2.86 (m, 1H, CH(CH₃)₂), 5.02 (s, 4H, 2CH₂), 7.12 (s, 2H, C_5H_2N), 7.32, 7.79 (dd, AX system, J = 8.2 Hz, 8H, $2C_6H_4$) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 21.8 (C₆H₄CH₃), 23.1, 33.9 (CH(CH₃)₂), 71.7 (C₅H₂N), 119.9, 128.2, 130.0, 132.9, 145.2, 153.5, 160.2 (C₆H₄) ppm. MS (ESI, CH₂Cl₂): m/z 490.3 [M⁺].

2. Thermal decomposition experiments of trinuclear complexes 2a-2e.

A 50 mL three-necked flask equipped with a magnetic stir-bar, a serum cap, a N₂ inlet tube and a reflux condenser topped with a N₂ outlet tube was charged with **2a** (35 mg, 0.05 mmol) and CH₂Cl₂ (5 mL). After the stirred mixture was refluxed for 12 h, it was subjected to flash column chromatography under anaerobic conditions. First, CH₂Cl₂ eluted a brown-red band from which the unreacted **2a** (21 mg, 61%) was recovered. Then, CH₂Cl₂/acetone (v/v = 4:1) eluted a red band from which product **3a** (5 mg, 21%) was obtained.

(2) Thermal decomposition experiment of 2a in refluxing CH₂Cl₂ in air.

A 50 mL three-necked flask equipped with a condenser was charged with **2a** (35 mg, 0.05 mmol) and CH₂Cl₂ (5 mL). The mixture was refluxed for 12 h and then the resulting mixture was subjected to flash column chromatography in air. No **2a** was recovered due to its decomposition during the refluxing and isolation courses in air. CH₂Cl₂/acetone (v/v = 4:1) eluted a tiny red band from which product **3a** (2.5 mg, 10%) was obtained.

A 50 mL three-necked flask equipped with a magnetic stir-bar, two serum caps and a N₂ inlet tube was charged with **2b** (36 mg, 0.05 mmol) and CH₂Cl₂ (5 mL). After the mixture was stirred at room temperature for 12 h, it was subjected to flash column chromatography under anaerobic conditions. First, CH₂Cl₂ eluted a brown-red band from which the unreacted **2b** (24 mg, 69%) was recovered. Then, CH₂Cl₂/acetone (v/v = 4:1) eluted a red band from which product **3b** (3 mg, 12%) was obtained. Similarly, by using trinuclear complex **2c** (36 mg, 0.05 mmol), **2d** (39 mg, 0.05 mmol), or **2e** (37 mg, 0.05 mmol), the unreacted **2c** (26 mg, 72%), **2d** (27 mg, 69%), or **2e** (27 mg, 73%) was recovered and the corresponding product **3c** (2.8 mg, 11%), **3d** (4 mg, 15%), or **3e** (4 mg, 16%) was obtained. A 50 mL three-necked flask equipped with a condenser was charged with **2b** (36 mg, 0.05 mmol) and CH₂Cl₂ (5 mL). The mixture was stirred at room temperature for 12 h then the resulting mixture was subjected to flash column chromatography. No **2b** was recovered due to its decomposition during the stirring and isolation courses in air. CH₂Cl₂/acetone (v/v = 4:1) eluted a tiny red band from which product **3b** (1.5 mg, 6%) was obtained. Similarly, by using **2c** (36 mg, 0.05 mmol), **2d** (39 mg, 0.05 mmol), or **2e** (37 mg, 0.05 mmol), no **2c**, **2d** or **2e** was recovered. The corresponding product **3c** (1.2 mg, 5%), **3d** (1.6 mg, 6%), or **3e** (1.8 mg, 7%) was obtained.

Table S1. Selected bond lengths (Å) and angles (°) for 2b Ni(1)-N(1)2.042(2)Ni(1)-S(1)2.2130(11) Ni(1)-S(3)2.2609(9)Ni(1)-Fe(1) 2.4737(8) Ni(1)-Fe(2) 2.4574(8) Fe(1)-Fe(2)2.5900(10)Fe(1)-S(2)Fe(2)-S(4)2.2835(11)2.2666(11)N(1)-Ni(1)-Fe(1)113.58(7) S(3)-Ni(1)-Fe(1)156.61(3) 58.009(19) S(1)-Ni(1)-Fe(1)57.24(3) Ni(1)-Fe(1)-Fe(2) Fe(1)-Ni(1)-Fe(2)63.37(2) Fe(1)-Fe(2)-S(4)86.80(4) Ni(1)-Fe(2)-Fe(1) 58.62(2) Fe(2)-Fe(1)-S(2)142.12(3)

3. Tables S1 and S2: Selected bond lengths (Å) and angles (°) for 2b and 3c

O(1)-C(1)	1.138(2)	Fe(1)-N(1)	1.9972(15)
Fe(1)-S(4)	2.1867(7)	Fe(1)-S(2)	2.2139(8)
Fe(1)-S(1)	2.2868(7)	Fe(1)-S(3)	2.2991(7)
N(1)-Fe(1)-S(3)	90.10(5)	S(4)-Fe(1)-S(3)	89.91(2)
O(1)-C(1)-Fe(1)	178.9(2)	C(2)-S(1)-Fe(1)	102.48(6)
C(7)-S(2)-Fe(1)	104.18(6)	C(8)-S(2)-Fe(1)	97.43(6)

4. Figures S1 and S2: Molecular structures of 2b and 3c

Figure S1. Molecular structure of 2b with 30% probability level ellipsoids.

Figure S2. Molecular structure of 3c with 30% probability level ellipsoids.

5. Figure S3: Plots of i_p versus $v^{1/2}$ for 2a

6. Figure S4: Cyclic voltammograms of 2b-2e with TFA

7. Figures S5 and S6: Overpotential determinations for 2a-2e

Since the p K_a and the standard redox potential are known for MeCN solutions of TFA (p $K_a^{MeCN} = 12.7$,³ homoconjugation not taken into account), the $E^{o,MeCN}$ (TFA/H₂) = -0.89 V vs Fc/Fc⁺ can be calculated using Evans' relationship.⁴ The overpotential of 525 mV for the electrocatalytic proton reduction catalyzed by **2a** is measured from the potential at 0.5 (i_{pc}), where i_{pc} is the cathodic peak current in the cyclic voltammogram recorded after addition of 100 equivalents of TFA (Figure S5).

The overpotentials for **2b-2e** can also be calculated by Evans' relationship (Figure S6).

8. Figure S7: Plot of i_p versus $v^{1/2}$ for 3a

9. Figure S8: Cyclic voltammograms of 3b-3e with TFA

10. Figure S9: Overpotential determinations for 3a-3e

The overpotentials for **3a-3e** can also be calculated by Evans' relationship (Figure S9).

11. References

1 R. Shelkov, A. Melman, Eur. J. Org. Chem. 2005, 1397-1401.

G. A. N. Felton, R. S. Glass, D. L. Lichtenberger and D. H. Evans, *Inorg. Chem.* 2006, 45, 9181-9184.