Supporting Information for Paper Entitled:

"The titanium *tris*-anilide cation [Ti(N[^{*t*}Bu]Ar)₃]⁺ stabilized as its perfluoro-*tetra*-phenylborate salt: structural characterization and synthesis in connection with redox activity of 4,4'-bipyridine dititanium complexes"

Heather A. Spinney, Christopher R. Clough, and Christopher C. Cummins*

Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 6-435 Cambridge, Massachusetts, 02139 (USA)

Contents:

Figures of Spectra	2
X-ray Crystallography Tables	13
Optimized Geometry Coordinates	15

Figure S2. ¹³C NMR spectrum of (4,4'-bipy){Ti $(N['Bu]Ar)_3$ }₂ in C₆D₆.

Figure S3. Ir spectrum (nujol mull) of (4,4'-bipy){Ti(N['Bu]Ar)₃}₂.

Figure S4. ¹H NMR spectrum of mixture of $ITi(N['Bu]Ar)_3$ and 4,4'-bipyridine, resulting from treatment of (4,4'-bipy){Ti(N['Bu]Ar)_3}₂ with I₂.

Figure S5. ¹H NMR spectrum of mixture of (4,4'-bipy){Ti(N['Bu]Ar)₃}₂, TfOTi(N['Bu]Ar)₃, 4,4'-bipyridine, and ferrocene.

Figure S6. EPR spectrum of material isolated form treatment of (4,4'-bipy) {Ti(N['Bu]Ar)₃}₂ with excess 1% Na/Hg (C₆D₆).

Figure S7. ${}^{19}F{}^{1}H$ NMR spectrum of FcB(C₆F₅)₄ in THF.

Figure S8. UV/Visible absorbance spectrum of $[(4,4'-bipy){Ti(N['Bu]Ar)_3}_2][B(C_6F_5)_4]$ in THF solution.

Figure S9. Ir spectrum (nujol mull) of $[(4,4'-bipy){Ti(N['Bu]Ar)_3}_2][B(C_6F_5)_4]$.

Figure S11. ¹H NMR spectrum of $[(4,4'-bipy){Ti(N['Bu]Ar)_3}_2][B(C_6F_5)_4]_2$ in THF-d₈.

Figure S12. Blow up of 4,4'-bipyridine region of spectrum in Figure S11.

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of $[(4,4'-bipy){Ti(N['Bu]Ar)_3}_2][B(C_6F_5)_4]_2$ in CDCl₃.

Figure S15. ¹H NMR spectrum of $[Ti(N['Bu]Ar)_3][B(C_6F_5)_4]$ in pyridine- d_5 .

9

Figure S17. ¹H NMR spectrum of [Ti(N['Bu]Ar)₃][B(C₆F₅)₄] in C₆D₆/o-difluorobenzene.

Figure S18. ¹³C{¹H} NMR spectrum of $[Ti(N[^{t}Bu]Ar)_{3}][B(C_{6}F_{5})_{4}]$ in pyridine- d_{5} .

Figure S19. ¹³C{¹H} NMR spectrum of $[Ti(N['Bu]Ar)_3][B(C_6F_5)_4]$ in THF- d_8 .

Figure S21. ¹³C{¹H} NMR spectrum of $[Ti(N['Bu]Ar)_3][B(C_6F_5)_4]$ in C₆D₆/o-difluorobenzene.

Figure S22. ¹H NMR spectrum of "BuOTi(N['Bu]Ar)₃ in C₆D₆.

Figure S23. ¹³C{¹H} NMR spectrum of ^{*n*}BuOTi(N[^{*t*}Bu]Ar)₃ in CDCl₃.

	2·(C7H8)2(C5H12)	4·(0-F2C6H4)	5-(THF)(Et ₂ O)
CCDC No.	893531	893532	893533
Formula	$C_{101}H_{144}N_8Ti_2$	$C_{136}H_{120}B_2N_8F_{42}Ti_2$	C68H72BN3O2F20Ti
Color	orange	orange	orange
Morphology	block	shard	block
Size, mm ³	$0.50 \times 0.50 \times 0.35$	$0.44 \times 0.15 \times 0.06$	$0.36 \times 0.21 \times 0.10$
Crystal System	Triclinic	Triclinic	Triclinic
Space Group	P-1	<i>P</i> -1	<i>P</i> -1
Wavelength, Å	0.71073	0.71073	0.71073
Temperature, K	100(2)	100(2)	100(2)
a, Å	11.7441 (10)	12.9999(16)	13.3000(11)
b, Å	14.5289 (12)	14.4638(18)	13.5930(11)
<i>c</i> , Å	15.3188 (13)	35.939(5)	19.2817(15)
α, deg	80.1400(10)	82.097(2)	107.9740(10)
β, deg	69.8540 (10)	80.086(2)	95.3190(10)
γ, deg	71.3520(10)	83.947(2)	95.813(2)
$V, Å^{\overline{3}}$	2319.6(3)	6570.2(14)	3270.3(5)
Ζ	1	2	2
D_{χ} , g cm ⁻³	1.121	1.406	1.424
F(000)	850	2848	1448
μ, (Mo <i>Kα</i>), mm ⁻¹	0.221	0.234	0.235
No. Reflections	60016	137441	77101
No. Ind. Reflections	12435	20905	15001
R_{int}	0.0353	0.0805	0.0505
$\theta_{max}/\theta_{min}$	29.13 / 1.42	24.11 / 0.58	27.48 / 1.55
Completeness, %	99.7	100.0	100.0
Goodness of Fit	1.058	1.041	1.030
$R(F)^{a}$ (I > 2 σ)	0.0528	0.0457	0.0399
$WR(F^2)^{a}$	0.1595	0.1034	0.0984
Largest difference	+ 1.402 / - 0.857	+ 0.284 / - 0.1034	+ 0.348 / - 0.378
peak/hole (e/ A ³)			

Table S1: Crystallographic Data for 2, 4·(*o*-F₂C₆H₄), and 5·(THF)(Et₂O) where 2 = (4,4'-bipy){Ti(N['Bu]Ar)₃}₂, 4 = $[(4,4'-bipy){Ti(N['Bu]Ar)_3}_2][B(C_6F_5)_4]_2$, and 5·(THF) = $[(THF)Ti(N['Bu]Ar)_3][B(C_6F_5)_4]$.

^a Quantity minimized = $wR(F^2) = (\sum [w(F_o^2 - F_c^2)^2] / \sum [(wF_o^2)^2])^{1/2}; R = \sum \Delta / \sum (F_o), \Delta = |F_o - F_c|, w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP], P = 2F_c^2 + Max(F_o, 0)/3$

	5	6
CCDC No.	893534	893535
Formula	C63H59.90BN3F20.22 Ti	C40H63N3OTi
Color	orange	yellow
Morphology	block	block
Size, mm ³	$0.40 \times 0.40 \times 0.10$	$0.30 \times 0.30 \times 0.21$
Crystal System	Monoclinic	Cubic
Space Group	$P2_{1}/n$	Pa-3
Wavelength, Å	0.71073	0.71073
Temperature, K	100(2)	100(2)
<i>a</i> , Å	16.8241(15)	19.7299(9)
b, Å	20.9559(19)	19.7299(9)
<i>c</i> , Å	17.3595(15)	19.7299(9)
a, deg	90	90
β, deg	99.905(2)	90
γ, deg	90	90
<i>V</i> , Å ³	6029.1(9)	7680.2(6)
Ζ	4	8
D_{χ} , g cm ⁻³	1.434	1.125
F(000)	2672	2832
μ, (Mo <i>Kα</i>), mm ⁻¹	0.247	0.255
No. Reflections	121467	166583
No. Ind. Reflections	14973	3187
R_{int}	0.0796	0.0635
$\theta_{max}/\theta_{min}$	28.28 / 1.54	28.26 / 1.79
Completeness, %	100.0	100.0
Goodness of Fit	1.006	1.076
$R(F)^{a}$ (I > 2 σ)	0.0424	0.0532
$WR(F^2)^{a}$	0.0998	0.1626
Largest difference	+0.346/-0.418	+0.954/-0.463
peak/hole (e/ Å ³)		

Table S2: Crystallographic Data for **5** and **6**. Where $\mathbf{5} = [\text{Ti}(N[^{t}\text{Bu}]\text{Ar})_{3}][B(C_{6}F_{5})_{4}]$ and $\mathbf{6} = ^{n}\text{BuOTi}(N[^{t}\text{Bu}]\text{Ar})_{3}$.

^a Quantity minimized = $wR(F^2) = (\sum [w(F_o^2 - F_c^2)^2] / \sum [(wF_o^2)^2])^{1/2}; R = \sum \Delta / \sum (F_o), \Delta = |F_o - F_c|, w = 1 / [\sigma^2(F_o^2) + (aP)^2 + bP], P = 2F_c^2 + Max(F_o, 0) / 3$

Optimized Geometries in Cartesian Coordinates (Å)

Truncated Model Version of **2**, (4,4'-bipy){Ti(N[Me]Ph)₃}₂

С	-0.127856	-0.019634	0.692230
С	0.867200	-0.345028	1.678584
С	0.595316	-0.364073	3.012997
Ν	-0.645226	-0.071071	3.559384
С	-1.623071	0.227791	2.619120
С	-1.413577	0.257900	1.276618
Ti	-1.136518	-0.038298	5.500526
Ν	0.345444	-0.799950	6.478909
С	1.519383	0.042700	6.726929
С	0.454887	-2.092782	7.070219
С	0.833405	-3.203043	6.300953
С	0.965231	-4.464568	6.883927
С	0.723854	-4.640785	8.246916
С	0.346620	-3.542595	9.023069
С	0.216208	-2.282430	8.441443
Ν	-2.748194	-1.068594	5.743180
С	-2.889486	-2.322077	4.992015
С	-3.871860	-0.781186	6.568759
С	-3.828185	-1.035460	7.947827
С	-4.936809	-0.783687	8.757344
С	-6.113213	-0.277746	8.205021
С	-6.169298	-0.021495	6.832881
С	-5.061908	-0.270543	6.023427
Ν	-1.422460	1.784326	6.041192
С	-1.417931	2.151867	7.458187
С	-1.797893	2.844439	5.163316
С	-3.134930	3.266377	5.064894
С	-3.495701	4.285404	4.183603
С	-2.531376	4.905987	3.386780
С	-1.200641	4.497529	3.481506
С	-0.837336	3.480430	4.363551
Н	1.880581	-0.593082	1.386311
Н	1.374747	-0.617996	3.723157
Н	-2.606446	0.460754	3.016552
Н	-2.265033	0.515285	0.658959
Н	1.381956	1.031686	6.279109
Н	2.428480	-0.397881	6.290409
Н	1.710095	0.186340	7.800443
Н	1.031898	-3.069148	5.240204
Н	1.261642	-5.311450	6.268841
Н	0.826418	-5.623132	8.700339
Н	0.149606	-3.668468	10.085873
Н	-0.077349	-1.430099	9.050506
Н	-2.922610	-1.454913	8.376023
Н	-4.882239	-0.996243	9.822870

Н	-6.978716	-0.089283	8.835011
Н	-7.081299	0.374372	6.390480
Н	-5.111055	-0.068714	4.955891
Н	-2.036556	-2.468723	4.322518
н	-2 938782	-3 188464	5 666126
и П	-2 707774	-2 224504	1 272651
п	-3.797774	-2.524594	4.3720JI 7. CE4CO4
H	-0.709038	2.970099	7.654604
H	-1.119234	1.295931	8.071945
H	-2.407432	2.475253	7.807357
Н	-3.892451	2.780172	5.672753
Н	-4.537877	4.590087	4.113393
Н	-2.814671	5.695699	2.695404
Н	-0.438851	4.969489	2.865359
н	0.200837	3.166390	4,433964
C	0 127856	0 019634	-0 692230
C	-0.867200	0.010004	-1 670504
C	-0.807200	0.343020	-1.070304
C	-0.595316	0.364073	-3.012997
Ν	0.645226	0.071071	-3.559384
С	1.623071	-0.227791	-2.619120
С	1.413577	-0.257900	-1.276618
Ti	1.136518	0.038298	-5.500526
N	-0.345444	0.799950	-6.478909
С	-1.519383	-0.042700	-6.726929
С	-0.454887	2.092782	-7.070219
C	-0 833405	3 203043	-6 300953
C	-0.965231	1 161568	-6 883027
C	0 722054	4.404500	-0.003927
Č	-0.723634	4.640765	-0.240910
C	-0.346620	3.542595	-9.023069
С	-0.216208	2.282430	-8.441443
N	2.748194	1.068594	-5.743180
С	2.889486	2.322077	-4.992015
С	3.871860	0.781186	-6.568759
С	3.828185	1.035460	-7.947827
С	4.936809	0.783687	-8.757344
С	6.113213	0.277746	-8.205021
C	6 169298	0 021495	-6 832881
C	5 061000	0.021400	-6 022427
	1 400400	1 704220	-0.023427
N ~	1.422460	-1./84326	-6.041192
C	1.41/931	-2.151867	-/.45818/
С	1.797893	-2.844439	-5.163316
С	3.134930	-3.266377	-5.064894
С	3.495701	-4.285404	-4.183603
С	2.531376	-4.905987	-3.386780
С	1.200641	-4.497529	-3.481506
С	0.837336	-3,480430	-4.363551
н	-1 880581	0 593082	-1 386311
и П	-1 374747	0.617996	-3 723157
11	-1.5/4/4/	0.017990	-3.723137
п	2.000440	-0.460754	-3.010552
Н	2.265033	-0.515285	-0.658959
H	-1.381956	-1.031686	-6.279109
Н	-2.428480	0.397881	-6.290409
Н	-1.710095	-0.186340	-7.800443
Н	-1.031898	3.069148	-5.240204
Н	-1.261642	5.311450	-6.268841
Н	-0.826418	5.623132	-8.700339
Н	-0.149606	3.668468	-10.085873
Н	0.077349	1.430099	-9.050506

Н	2.922610	1.454913	-8.376023
Н	4.882239	0.996243	-9.822870
Н	6.978716	0.089283	-8.835011
Н	7.081299	-0.374372	-6.390480
Н	5.111055	0.068714	-4.955891
Н	2.036556	2.468723	-4.322518
Н	2.938782	3.188464	-5.666126
Н	3.797774	2.324594	-4.372651
Н	0.709038	-2.970099	-7.654604
Н	1.119234	-1.295931	-8.071945
Н	2.407432	-2.475253	-7.807357
Н	3.892451	-2.780172	-5.672753
Н	4.537877	-4.590087	-4.113393
Н	2.814671	-5.695699	-2.695404
Н	0.438851	-4.969489	-2.865359
Н	-0.200837	-3.166390	-4.433964