Synthesis and (Spectro)Electrochemistry of Mixed-Valent Diferrocenyl-

dihydrothiopyran Derivatives

Konrad Kowalski,* a Rafał Karpowicz, a Grzegorz Mlostoń,^b Dominique Miesel, ^c Alexander Hildebrandt,^c Heinrich Lang,^c Rafał Czerwieniec, ^d Bruno Therrien^e

^aFaculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, PL-91403 Łódź, Poland
^bFaculty of Chemistry, Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91403 Łódź, Poland
^cTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
^d Universität Regensburg, Institut für Physikalische und Theoretische Chemie, Universitätsstraße 31, D-93040 Regensburg, Germany
^eInstitute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland

Supplementary Information

Contents

Figure S1 ¹ H-NMR spectrum of 1	3
Figure S2 ¹ H-NMR spectrum of 2	4
Figure S3 ¹ H-NMR spectrum of 2	5
Figure S4 ¹ H-NMR spectrum of 3	6
Figure S5 UV-Vis/NIR spectra of 2 at 25 °C in acetonitrile	7
Table S1 Crystallographic and structure refinement parameters for 1 and 3	8

Figure S2 ¹H-NMR spectrum of 2

Figure S3 ¹H-NMR spectrum of 2

Figure S4 ¹H-NMR spectrum of 3

Figure S5. Left: UV-Vis/NIR spectra of **2** at 25 °C in acetonitrile (2.0 mmol·L⁻¹) at rising potentials (bottom: -200 to 525 mV; top: 525 to 1200 mV vs Ag/AgCl); supporting electrolyte $[Bu_4N][B(C_6F_5)_4]$. Right: Deconvolution of the NIR absorptions of **2**⁺ using three Gaussian shaped bands determined by spectroelectrochemistry in an OTTLE cell.

	1	3
Chemical formula	$C_{27}H_{28}Fe_2S$	$\mathrm{C}_{27}\mathrm{H}_{28}\mathrm{F}e_{2}\mathrm{O}_{2}\mathrm{S}$
Formula weight	496.25	528.25
Crystal system	Orthorhombic	Triclinic
Space group	<i>P cab</i> (no. 61)	<i>P</i> -1 (no. 2)
Crystal color and shape	red block	red block
Crystal size	0.18 x 0.18 x 0.16	0.21 x 0.20 x 0.16
<i>a</i> (Å)	9.7243(7)	12.7358(10)
<i>b</i> (Å)	13.7133(10)	14.2608(12)
c (Å)	32.524(2)	14.4554(11)
α (°)		103.754(6)
β (°)		115.357(6)
γ (°)		92.709(6)
$V(Å^3)$	4337.1(5)	2271.0(3)
Ζ	8	4
<i>T</i> (K)	173(2)	173(2)
$D_{\rm c} \left({\rm g} \cdot {\rm cm}^{-3} \right)$	1.520	1.545
μ (mm ⁻¹)	1.446	1.392
Scan range (°)	$1.94 < \theta < 29.23$	$1.63 < \theta < 29.28$
Unique reflections	5881	12288
Observed refls $[I \ge 2\sigma(I)]$	2950	5481
R _{int}	0.0908	0.1299
Final <i>R</i> indices $[I \ge 2\sigma(I)]^*$	$0.0288, wR_2 \ 0.0389$	$0.0430, wR_2 \ 0.0814$
<i>R</i> indices (all data)	$0.0835, wR_2 \ 0.0431$	0.1122, <i>wR</i> ₂ 0.0919
Goodness-of-fit	0.599	0.676
Max, Min $\Delta \rho/e$ (Å ⁻³)	0.319, -0.299	0.397, -0.415
γ (°) V (Å ³) Z T (K) D_c (g·cm ⁻³) μ (mm ⁻¹) Scan range (°) Unique reflections Observed refls [I>2 σ (I)] R_{int} Final R indices [I>2 σ (I)]* R indices (all data) Goodness-of-fit Max, Min $\Delta \rho/e$ (Å ⁻³) * Structures were refined on E ² : wP	4337.1(5) 8 173(2) 1.520 1.446 1.94 < θ < 29.23 5881 2950 0.0908 0.0288, wR ₂ 0.0389 0.0835, wR ₂ 0.0431 0.599 0.319, -0.299 2. = [\Sigma[w (E, ² - E ²) ²] / Sw (E	2271.0(3) 4 173(2) 1.545 1.392 1.63 < θ < 29.28 12288 5481 0.1299 0.0430, wR ₂ 0.0814 0.1122, wR ₂ 0.0919 0.676 0.397, -0.415 -2) ² 1 ^{1/2} where wr ¹ = [\Sigma(E, ²) +

 Table S1. Crystallographic and structure refinement parameters for 1 and 3.

* Structures were refined on F_0^2 : $wR_2 = [\Sigma[w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [max(F_0^2, 0) + 2F_c^2]/3$