Supporting Information

Influence of the central diamagnetic cyanidometal on the distant magnetic interaction in cyanide-bridged Fe(III)-M(II)-Fe(III) complexes?

Yong Wang,^a Chensheng Lin,^a Xiao Ma,^a Zhenzhen Xue,^a Xiaoquan Zhu,^a Wenhai Cao,^a Shengmin Hu,^a Tianlu Sheng,^{*a} and Xintao Wu^a

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P.R. China

TDDFT Calculations

For the singly oxidized species 5 and 6, it is difficult to attribute the absorption bands in the NIR region, because three assignments are possible: 1) the central $Os^{II} \rightarrow$ terminal Fe^{III} MMCT; 2) the distant terminal $Fe^{III} \rightarrow$ terminal Fe^{III} MMCT; 3) the mixture of the central $Os^{II} \rightarrow$ terminal Fe^{III} and the terminal $Fe^{III} \rightarrow$ terminal Fe^{III} MMCTs. In order to accurately assign the absorption bands in the NIR regions of 5 and 6, the TDDFT calculations have been done. The redistributions of electron densities are shown in Figures S3 and S4 for 5 and 6, respectively. The frontier orbitals of complexes 5 and 6 in the CH₃CN solution are shown in Figures S5-S8. The calculated vertical excitation energies and contribution of complexes 5 and 6 are listed in Table S1. The calculated maximum absorption wavelengths in the NIR region are 819.7 nm for 5 and 912 nm for 6, respectively. These are in accordance with the experimental data (910 nm for 5 and 912 nm for 6). From the redistribution of electron densities (Figures S3 and S4), it can be found that the flow of electrons largely comes from the mixture of the central $Os^{II} \rightarrow$ terminal Fe^{III} and the distant terminal $Fe^{III} \rightarrow$ terminal Fe^{III} MMCTs. Furthermore, the frontier molecular orbital analysis indicates that the broad band at 910 nm for 5 and 912 nm for 6 are mainly assigned to the molecular orbital β electron HOMO-1 \rightarrow LUMO transition.

Computational Methods.

All calculations have been performed with the Gaussian 09 program package. The geometry of complexes **5** and **6** were optimized at the B3LYP level with LANL2DZ basis set for atoms C, H, N, Os

and Fe and 6-31+G* basis set for atom P. TDDFT calculation was done based on these optimized structure. The solvent effect (acetonitrile) was taken into account by using the PCM approximation^[1] in these calculations.

 R. Improta, V. Barone, G. Scalmani, M. J. Frisch, J. Chem. Phys. 2006, 125, 054103: 054101-054109.

Table S1. Crystanographic Data and Details of Structure Determination for 1-5.				
	$1 \cdot 2Et_2O \cdot CH_2Cl_2$	$2 \cdot 4 CH_2 Cl_2$	$3 \cdot 2CH_2Cl_2 \cdot C_4H_{10}O$	
Chemical formula	$C_{93}H_{96}Cl_2F_{12}Fe_2N_6O_2$	$C_{92}H_{82}Cl_8F_{12}Fe_2N_6Os$	C. H. Cl. F. Fe N. P.	
	OsP ₆	P ₆	C901188C141,121,C31N6F6	
Formula weight	2116.38	2270.96	1992.83	
Colour and Habit	Red needle	Red needle	Gray prism	
Crystal Size / mm	0.45×0.04×0.03	0.56×0.05×0.04	0.79×0.17×0.05	
T/K	123	123	123	
Crystal system	Monoclinic	Orthorhombic	Monoclinic	
Space group	$P2_1/n$	Pbca	$P2_{1}/c$	
<i>a</i> / Å	11.259(7)	28.108(11)	11.294(5)	
b/Å	34.410(18)	20.092(8)	33.956(14)	
<i>c</i> / Å	23.606(14)	33.297(14)	25.136(10)	
lpha / °	90.00	90.00	90.00	
eta / °	95.685(12)	90.00	110.097(17)	
γ/°	90.00	90.00	90.00	
$V/ \text{\AA}^3$	9100(9)	18804(13)	9053(7)	
Ζ	4	8	4	
$\rho_{\rm calcd}({ m g/cm^3})$	1.545	1.604	1.462	
λ (Mo K _a , Å)	0.71073	0.71073	0.71073	
μ (Mo K_{α} , mm ⁻¹)	1.948	2.055	0.773	
Completeness	98.1%	98.1%	98.3%	
F(000)	4288	9104	4088	
	-13≤ <i>h</i> ≤13,	<i>-</i> 33≤ <i>h</i> ≤33,	<i>-</i> 12≤ <i>h</i> ≤14,	
<i>h</i> , <i>k</i> , <i>l</i> , range	-40≤k≤40,	<i>-</i> 23≤ <i>k</i> ≤23,	<i>-</i> 42 <i>≤k≤</i> 44,	
	-28≤ <i>l</i> ≤28	<i>-</i> 39≤ <i>l</i> ≤39	-32≤ <i>l</i> ≤32	
θ range / deg	2.70-25.00	2.12-25.00	2.01-27.50	
Reflections	15707	16241	20455	
measured	13727	10241	20433	
$R_{ m int}$	0.0946	0.1451	0.1141	
Params/restraints/	1171/708/11833	1180/117/11594	1182/191/11924	
Data(obs.)	1.045	1.0.64	1.010	
GOF	1.047	1.064	1.012	

 Table S1. Crystallographic Data and Details of Structure Determination for 1-3

$R_{1, \omega}R_{2}(I > 2 \sigma(I))$	0.0989, 0.1993	0.1132, 0.2050	0.1069, 0.2104
$R_1, _{\omega}R_2$ (all data)	0.1254, 0.2151	0.1418, 0.2239	0.1488, 0.2354

	1	2		3
Os-C1	1.953(13)	1.997(13)	Fe3-C1	1.932(7)
Os-C2	1.976(14)	2.003(13)	Fe3-C2	1.921(7)
Os-N3	2.105(10)	2.111(9)	Fe3-N3	1.984(4)
Os-N4	2.064(10)	2.070(10)	Fe3-N4	1.998(6)
Os-N5	2.052(10)	2.090(10)	Fe3-N5	1.983(5)
Os-N6	2.074(10)	2.106(9)	Fe3-N6	1.984(5)
C1≡N1	1.233(15)	1.171(14)	C1≡N1	1.157(8)
C2≡N2	1.199(15)	1.181(14)	C2≡N2	1.155(8)
Fe1-N1	1.905(10)	1.898(9)	Fe1-N1	1.930(6)
Fe2-N2	1.907(10)	1.902(9)	Fe2-N2	1.921(5)
Fe1-P1	2.197(4)	2.200(4)	Fe1-P1	2.205(2)
Fe1-P2	2.189(5)	2.195(3)	Fe1-P2	2.191(2)
Fe2-P3	2.202(4)	2.195(4)	Fe2-P3	2.212(2)
Fe2-P4	2.192(4)	2.189(3)	Fe2-P4	2.193(2)
C1-Os-C2	94.2(5)	92.1(4)	C1-Fe3-C2	91.9(3)
N1≡C1-Os	179.3(11)	177.2(10)	N1≡C1-Fe3	174.4(6)
N2≡C2-Os	176.7(10)	177.7(10)	N2≡C2-Fe3	172.4(6)
C1≡N1-Fe1	171.0(9)	178.6(10)	C1≡N1-Fe1	174.7(5)
C2≡N2-Fe2	178.2(10)	173.7(9)	C2≡N2-Fe2	176.2(5)
Os…Fe1	5.091	5.066	Fe3…Fe1	5.019
Os…Fe2	5.082	5.084	Fe3Fe2	5.000
Fe1…Fe2	7.652	7.592	Fe1Fe2	7.602
Fe1…Fe2(-NC-Os-CN)	10.173	10.150	Fe1…Fe2(-NC-Fe-CN)	10.019

Table S2. Selected Bond Distances (Å) and Bond Angles (°) for 1-3.

 Table S3. Calculated Vertical Excitation Energies in nm for Complexes 5 and 6.

5 , α electron (HOMO: 363 α ; LUMO: 364 α),		6 , α electron (HOMO: 375α; LUMO: 364α),	
β electron (HOMO: 362 β ; LUMO: 363 β)		β electron (HOMO: 362 β ; LUMO: 363 β)	
$\lambda(nm)$	Contribution (coefficient)	$\lambda(nm)$	Contribution (coefficient)
819.7	337α→364α (-0.11995),	823.2	$347\alpha \rightarrow 376\alpha \ (0.10944),$
	337α→365α (-0.33109),		347α→377α (0.28429),
	359α→365α (-0.14635);		371α→377α (0.12562),
	$360\alpha \rightarrow 365\alpha$ (-0.18472),		372α→377α (-0.16878),
	362α→365α (-0.10596),		374α→377α (0.10700),
	363α→365α (-0.14818),		375α→377α (-0.13084),
	$353\beta \rightarrow 367\beta$ (-0.17830),		366β→381β (0.13656),
	356β→367β (0.10701),		368β→381β (0.11943),

357β→363β (-0.21621),	369β →375β (0.21569),
359β→ 363β (-0.37658),	371β→375β (0.36866),
360β→363β (-0.11318),	372β →375β (0.12996),
360β→367β (-0.11735),	372β→381β (-0.10814),
361β→363β (0.62523).	373β→375β (0.65943).

Figure S1. Molecular structure of 1, hydrogen atoms have been removed for clarity.

Figure S2. Molecular structure of 2, hydrogen atoms have been removed for clarity.

Figure S3. Molecular structure of 3, hydrogen atoms have been removed for clarity.

Figure S4. Molecular structure of 4, hydrogen atoms have been removed for clarity.

Figure S5. Molecular structure of 6, hydrogen atoms have been removed for clarity.

Figure S6. Molecular structure of 7, hydrogen atoms have been removed for clarity.

Figure S7. Molecular structure of 8, hydrogen atoms have been removed for clarity.

Figure S8. Molecular structure of 9, hydrogen atoms have been removed for clarity.

Figure S9. Molecular structure of 10, hydrogen atoms have been removed for clarity.

Figure S10. Electronic absorption spectra of complexes 3 and 10 in CH₃CN at room temperature.

Figure S11. Electronic absorption spectra of complexes 4, 7 and 11 in CH_3CN at room temperature.

Figure S12. Redistribution of electron densities of **5** in the calculated 819.7 nm transition band. represents gain of electron density and represents losses of electron density after transition. The electron density value corresponds to the sosurface of 0.001.

Figure S13. Redistribution of electron densities of **6** in the calculated 823.2 nm transition band. represents gain of electron density and represents losses of electron density after transition. The electron density value corresponds to the sosurface of 0.001.

Figure S14. Schematic drawings of the selective frontier molecular orbitals for the α electron of 5.

Figure S15. Schematic drawings of the selective frontier molecular orbitals for the β electron of 5.

Figure S16. Schematic drawings of the selective frontier molecular orbitals for the α electron of 6.

Figure S17. Schematic drawings of the selective frontier molecular orbitals for the β electron of 6.

Figure S18. Magnetic behavior of complex **5** as measured in an applied field of 1000 Oe using a SQUID magnetometer. Temperature dependence of $\chi_M T$ of complex **5** in polycrystalline sample.

Figure S19. EPR spectra of complex 5 in polycrystalline sample at room temperature.

Figure S20. EPR spectra of complex 8 in solid sample at room temperature.

Figure S21. EPR spectra of complex 6 in polycrystalline sample at room temperature.

Figure S22. EPR spectra of complex 9 in polycrystalline sample at room temperature.

Figure S23. EPR spectra of complex 10 in polycrystalline sample at room temperature.

Figure S24. EPR spectra of complex 11 in polycrystalline sample at room temperature.

Figure S25. Plots of M-H for samples 8 and 9 at 2 K.