Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information For

Partial Oxidation of Light Hydrocarbons using Periodate and Chloride Salts

Steven E. Kalman^a, Dominik Munz^a, George C. Fortman^a, Nicholas C. Boaz^b, John T. Groves^{b,*}, T. Brent Gunnoe^{a,*}

^aDepartment of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States. Email: <u>tbg7h@virginia.edu</u>

^bDepartment of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States. Email: jtgroves@princeton.edu

Contents

General Considerations	S2
Methane Functionalization with Periodate/Chloride	S2
Ethane Functionalization with Periodate/Chloride	S4
Propane Functionalization with Periodate/Chloride	S6
Methane Functionalization with Iodate/Chloride	S 8
Determination of mmol Methane for 860 kPa	S11

General Considerations. All reactions were setup in air. Trifluoroacetic acid, potassium periodate, ammonium iodate and potassium chloride were purchased from a commercial vendor and used as received. Methane, ethane and propane were purchased from GTS-Welco. ¹H NMR spectra were recorded on a Bruker 600 MHz, a Bruker 800 MHz or a Varian 500 MHz spectrometer. NMR spectra were taken in neat HTFA with a capillary of C_6D_6 as an internal lock reference. Chemical shifts for ¹H NMR are reported relative to the internal standards of HOAc (δ 2.04) or dichloromethane (DCM) (δ 5.03). All reactions were performed in house-built highpressure reactors constructed primarily with stainless steel pieces from Swagelock. The reaction solutions were held in fabricated Teflon liners. The average volume of the reactors with the liner inserted is 16.1 mL. Reactions were stirred using 1.2 cm long rod-shaped stir bars. Reaction temperatures were maintained through inductive heat transfer from tight-fitting custom aluminum blocks. The initial moles of gas reported were determined by weighing the reactor before and after pressurization. Due to some variations, the mass of gas was averaged from at least 3 separate reactions. The exception to this procedure is when the mass of gas added is too small within the deviation of the balance used (See Determination of mmol Methane for 860 kPa below for more details, p. S10). All amounts of functionalized products are the result of averaging at least 3 independent runs.

General Procedure for Methane Functionalization with Periodate and Chloride. A stir bar, KIO₄, KCl and 8.0 mL HTFA were loaded into a tight-fitting Teflon liner. After the reactor was sealed and weighed, it was purged twice with CH₄ by pressurizing and slowly venting. The reactor was pressurized a third time with stirring for ~30 sec. After venting the reactor slowly, it was re-pressurized again with the appropriate pressure of CH₄ while stirring for 30 sec. The reactor was weighed again to quantify the mass of CH₄ added (for 860 kPa, the reactor was brought to a total pressure of ~3450 kPa using Ar at this point), and subsequently placed in a preheated aluminum block at the appropriate temperature. The reactor was stirred (800 rpm) at this temperature for 1 h. After this, it was removed from the heating block and placed in front of a fan for 30 min to cool to room temperature. The reactor was vented and then opened. HOAc was added as a standard and the contents were allowed to stir. An aliquot was removed, centrifuged, placed in an NMR tube containing a capillary filled with C₆D₆ and analyzed by ¹H NMR spectroscopy.

Data for Methane Functionalization with Periodate and Chloride

General Conditions:

Gas: Methane HTFA (mL): 8.0 Stirring: 800 rpm Time: 1 h

T (°C)	P (kPa)	KIO ₄	KCl	MeTFA	MeTFA	MeCl	MeCl	Ν
		(mmol)	(mmol)	(mmol)	(dev)	(mmol)	(dev)	
150	3450	7.7	.67	.063	.0053	.056	.013	3
160	3450	7.7	.67	.12	.02	.14	.01	3
170	3450	7.7	.67	.34	.11	.12	.02	3
180	3450	7.7	.67	.81	.11	.10	.02	3
190	3450	7.7	.67	1.05	.16	.10	.003	3
200	3450	7.7	.67	1.55	.16	.10	.02	3
210	3450	7.7	.67	1.56	.20	0.09	.02	3
220	3450	7.7	.67	1.62	.13	.074	.005	3
200	3450	7.7	0	0.19	.06	n.d.	n.d.	3
200	3450	7.7	.33	.49	.05	.07	.006	3
200	3450	7.7	1.0	1.61	.27	.12	.04	3
200	3450	7.7	1.3	1.68	.44	.16	.04	4
200	2070	7.7	.67	1.24	.25	.096	.020	3
200	4830	7.7	.67	1.06	.20	.15	.01	4
200	6200	7.7	.67	1.11	.28	.17	.01	3
200	3450	12	1.4	2.25	.11	.19	.02	3
200	3450	18	2.1	2.49	.04	.16	.03	3
200	2070	12	1.4	1.33	.32	.15	.06	3
200	3450	4.0	.47	.90	.05	.074	.005	3
200	860	12	1.4	1.07	.14	.039	.021	3
200	860	7.7	0.67	1.18	.01	.03	0	3
200	3450	15	1.8	1.98	.54	.25	.05	3

Figure S1. Sample ¹H NMR Spectrum with Assignments for Methane Functionalization with Periodate/Chloride.

General Procedure for Ethane Functionalization with Periodate and Chloride. A stir bar, KIO₄, KCl and 8.0 mL HTFA were loaded into a tight-fitting Teflon liner. After the reactor was sealed and weighed, it was purged twice with C_2H_6 by pressurizing and slowly venting. The reactor was pressurized a third time with stirring for ~30 sec. After venting the reactor slowly, it was re-pressurized again to quantify the mass of C_2H_6 added, and subsequently placed in a preheated aluminum block at 200°C. The reactor was stirred (800 rpm) at this temperature for 1 h. After this, it was removed from the heating block and placed in front of a fan for 30 min to cool to room temperature. The reactor was vented and then opened. DCM was added as a standard and the contents were allowed to stir. An aliquot was removed, centrifuged, placed in an NMR tube containing a capillary filled with C_6D_6 and analyzed by ¹H NMR spectroscopy.

Data for Ethane Functionalization with Periodate/Chloride

General Conditions

Reaction Gas: Ethane Pressure: 2070 kPa Temp.: 200 °C HTFA (mL): 8.0 Stirring: 800 rpm Time: 1 h

KIO ₄	KCl	EtTFA	EtTFA	EtCl	EtCl	Glycol	Glycol	Ν
(mmol)	(mmol)	(mmol)	(dev)	(mmol)	(dev)	(mmol)	(dev)	
7.7	.67	0.95	.23	.29	.03	.022	.005	3
12	1.4	1.30	.33	.50	.15	.023	.004	3

*Also observed trace (<0.02 mmol) 1,2-dichloroethane

Figure S2. Sample ¹H NMR Spectrum with Assignments for Ethane Functionalization with Periodate/Chloride.

General Procedure for the Functionalization of Propane using Periodate and Chloride. A stir bar, KIO₄ (5.2 mmol), KCl (0.61 mmol) and 8.0 mL HTFA were loaded into a tight-fitting Teflon liner. After the reactor was sealed and weighed, it was purged twice with C_3H_8 by pressurizing and slowly venting. The reactor was pressurized a third time with stirring for ~10 sec. After venting the reactor slowly, it was re-pressurized again with 660 kPa of C_3H_8 while stirring for 10 sec. The reactor was weighed again to quantify the mass of C_3H_8 added. To the reactor was added Ar to bring the pressure to 2070 kPa. The reactor was subsequently placed in a preheated aluminum block at 200 °C. The reactor was stirred (800 rpm) at this temperature for 0.5 h. After this, it was removed from the heating block and placed in front of a fan for 30 min to cool to room temperature. The reactor was vented and then opened. HOAc was added as a standard and the contents were allowed to stir. An aliquot was removed, centrifuged, placed in an NMR tube containing a capillary filled with C_6D_6 and analyzed by ¹H NMR spectroscopy.

Data for Propane Functionalization with Periodate/Chloride

General Conditions

Reaction Gas: Propane Pressure: 660 kPaKIO₄(mmol): 5.2KCl (mmol): 0.61Temp.: $200 \text{ }^\circ\text{C}$ HTFA (mL): 8.0Stirring: 800 rpmTime: 0.5 h

nPrTFA (mmol)	nPrTFA (dev)	iPrTFA (mmol)	iPrTFA (dev)	1,2- diTFA	1,2- diTFA	nPrCl (mmol)	nPrCl (dev)	Ν
				(mmol)	(dev)			
0.20	.04	0.47	.10	.19	.05	.10	.01	3

Figure S3. Sample ¹H NMR Spectrum with Assignments for Propane Functionalization with Periodate/Chloride.

General Procedure for Methane Functionalization with Iodate and Chloride. A stir bar, NH₄IO₃, KCl and 8.0 mL HTFA were loaded into a tight-fitting Teflon liner. After the reactor was sealed and weighed, it was purged twice with CH₄ by pressurizing and slowly venting. The reactor was pressurized a third time with stirring for ~30 sec. After venting the reactor slowly, it was re-pressurized again with 3450 kPa of CH₄ while stirring for 30 sec. The reactor was weighed again to quantify the mass of CH₄ added, and subsequently placed in a preheated aluminum block at 200 °C. The reactor was stirred (800 rpm) at this temperature for 1 h. After this, it was removed from the heating block and placed in front of a fan for 30 min to cool to room temperature. The reactor was vented and then opened. HOAc was added as a standard and the contents were allowed to stir. An aliquot was removed, centrifuged, placed in an NMR tube containing a capillary filled with C₆D₆ and analyzed by ¹H NMR spectroscopy.

Data for Methane Functionalization with Iodate and Chloride

General Conditions

Reaction Gas: Methane Temp.: 200 °C HTFA (mL): 8.0 Stirring: 800 rpm Time: 1 h

NH ₄ IO ₃	KC1	CH ₄	MeTFA	MeTFA	MeCl	MeCl	Ν
(mmol)	(mmol)	(kPa)	(mmol)	(dev)	(mmol)	(dev)	
7.7	.67	3450	2.22	.10	.054	.008	3
12	1.4	3450	2.41	.15	.063	0	3
7.7	.67	862	0.80	0.03	0.02	0.003	3

Figure S4. Sample ¹H NMR Spectrum with Assignments for Methane Functionalization with Iodate/Chloride.

Determination of mmol of Methane for 860 kPa

Across the range of pressures used in this study, methane pressure appears to follow Henry's Law and the ideal gas law (Figure S5). Due to deviations in the balance for small differences in mass, the following graph (Figure S5) was used to calculate the mmol of methane (2.9 mmol) added for reactions with 860 kPa of methane. The trend line was forced through (0,0).

Figure S5. Plot of mmol of methane (as determined by mass) vs initial methane pressure.