Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Two novel 3d-4f heterometallic coordination polymers with infinite $[Ln_4(OH)_4]_n^{8n+}$ chains involving *in situ* decarboxylation

Wen-Ya Wu,^a Rui-Feng Zhang,^{*a} Xue-Jing Zhang^b and Peng Cheng^{*b}

^a School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041000, China.

^b Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

Materials and methods

All commercially available chemicals are of analytical reagent grade and used as supplied without further purification. The C, H and N microanalyses were carried out with a Perkin-Elmer 240Q elemental analyzer. The IR spectra were recorded on a Varian 660-IR spectrometer photometer as KBr pellets in the 4000-400cm⁻¹. TGA were recorded with a Netzsch TG 209 apparatus under a nitrogen atmosphere. All of magnetic measurements were performed on a Quantum Design SQUIDMPMS VSM magnetometer.Diamagnetic corrections were made with Pascal's constants for all the sample holders and constituent atoms.

X-Ray crystallography

Single crystals appropriate for the X-ray diffraction analysis were elaborately selected under microscope. Single-crystal determinations were performed on SMART APEX CCD diffractometer equipped with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected using ω scans mode, and corrected for Lorentz and polarisation effects and absorption using SADABS software. The structures were solved by direct methods with SHELXS-97 software and difference Fourier techniques.¹ The non-hydrogen atoms were also solved by direct methods, and their coordinates and anisotropic thermal parameters were refined by full-matrix least-squares methods on F^2 . The positions of hydrogen atoms were obtained by hydrogenation theoretically. All of the calculations were carried out with program SHELXS-97 and program SHELXL-97. The hydrogen bonding parameters are shown in Table S1-S2. CCDC-1027471 (1) and CCDC-1027472 (2) contain the supplementary crystallographic data for this paper, these data can be obtained free of Crystallographic charge from the Cambridge Data Centre via www.ccdc.cam.ac.uk/data request/cif

Ref S1. M. Sheldrick, ActaCryst., 2008, A64, 112-122.

Synthesis of [Tb₄Co(QDA)₂(QA)₆(OH)₄(H₂O)₄] (1) : A mixture of Tb₄O₇ (0.100 g, 0.1 mmol), Co(NO₃)₂·6H₂O (0.116 g, 0.4 mmol), H₂QDA (0.217 g, 1mmol) and 8 mL water was sealed in a 23 mL Teflon-lined bomb at 150 °C for 2 days, and then cooled to room temperature at the rate of 20 °C h⁻¹. Brown prismatic crystals for 1 were obtained (yield: 28% based on Tb₄O₇). Anal. Calc. for 1, CoTb₄C₈₂H₅₈N₈O₂₈: C 42.82, H 2.52, N 4.87%. Found: C 42.52, H 2.91, N 4.74%. IR bands (cm⁻¹) for 1: 3432(vs), 1617(vs), 1601(vs), 1579(vs), 1545(s), 1493(w), 1461(s), 1428(s), 1416(s), 1400(s), 1317(m), 1210(w), 1128(w), 1066(w), 964(w), 937(w), 799(s), 770(w), 748(m), 614(w), 590(m).

Synthesis of $[Dy_4Co(QDA)_2(QA)_6(OH)_4(H_2O)_4]$ (2) : A mixture of Dy_2O_3 (0.075 g, 0.2 mmol), $Co(NO_3)_2 \cdot 6H_2O$ (0.116 g, 0.4 mmol), H_2QDA (0.217 g, 1 mmol) and 8 mL water was sealed in a 23 mL Teflon-lined bomb at 150 °C for 2 days, and then cooled to room temperature at the rate of 20 °C h⁻¹. Brown prismatic crystals for 2 were obtained (yield: 23% based on Dy_2O_3). Anal. Calc. for 2, $CoDy_4C_{82}H_{58}N_8O_{28}$: C 42.56, H 2.51, N 4.84%. Found: C 42.56, H 2.88, N 5.06%. IR bands (cm⁻¹) for 2: 3444(vs), 1647(vs), 1620(vs), 1587(vs), 1543(s), 1508(w), 1496(w), 1465(s), 1433(s), 1409(s), 1323(m), 1209(w), 1109(w), 1055(w), 960(w), 927(w), 800(s), 773(w), 748(m), 615(w), 596(m).

Crystallographic data for compound 1: $M_r = 2297.97$, triclinic, $P\bar{i}$, a = 7.6995(15) Å, b = 13.461(3) Å, c = 19.040(4) Å, $a = 109.24(3)^\circ$, $\beta = 93.49(3)^\circ$, $\gamma = 92.70(3)^\circ$, V = 1879.6(6) Å³, Z = 1, $D_c = 2.030$ g cm⁻³, $\mu = 4.025$ mm⁻¹, F(000) = 1117, GOF = 1.085, a total of 18022 reflections were collected, 8308 of which were unique ($R_{int} = 0.0344$). R_1 (w R_2) = 0.0330 (0.0866) for 556 parameters and 7096 reflections ($I > 2\sigma(I)$).

Crystallographic data for compound 2: $M_r = 2312.29$, triclinic, $P\bar{i}$, a = 7.6805(15) Å, b = 13.635(3) Å, c = 19.036(4) Å, $a = 109.16(3)^\circ$, $\beta = 93.43(3)^\circ$, $\gamma = 92.75(3)^\circ$, V = 1875.0(6) Å³, Z = 1, $D_c = 2.048g$ cm⁻³, $\mu = 4.248$ mm⁻¹, F(000) = 1121, GOF = 1.097, a total of 18364 reflections were collected, 8474 of which were unique ($R_{int} = 0.0313$). R_1 (w R_2) = 0.0299 (0.0715) for 556 parameters and 7444 reflections ($I > 2\sigma(I)$).

Label	SHAPE	Symmetry	Distortion(Dy1/Dy2)
OP-8	Octagon	D_{8h}	32.502/28.377
HPY-8	Heptagonal pyramid	C_{7v}	23.691/25.238
HBPY-8	Hexagonal bipyramid	D_{6h}	14.004/11.824
CU-8	Cube	O_h	9.587/7.718
SAPR-8	Square antiprism	D_{4d}	2.773/2.745
TDD-8	Triangular dodecahedron	D_{2d}	1.316/3.003
JGBF-8	Johnson gyrobifastigium J26	D_{2d}	12.526/9.887
JETBPY-8	Johnson elongated triangular bipyramid J14	D_{3h}	26.762/26.250
JBTPR-8	Biaugmented trigonal prism J50	C_{2v}	1.787/2.242
BTPR-8	Biaugmented trigonal prism	C_{2v}	1.682/1.881
JSD-8	Snub diphenoid J84	D_{2d}	3.798/4.007
TT-8	Triakis tetrahedron	T_d	10.313/8.345
ETBPY-8	Elongated trigonal bipyramid	D_{3h}	23.527/22.223

Table S1 SHAPE analysis of Dy^{III} cation in 2.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2015

D-HA/(°)	d(D-H)/(Å)	d(HA)/(Å)	d(DA)/(Å)	<(D-H-A)				
O(11)-H(111)O(6)#3	0.85	2.12	2.949(6)	164.3				
O(12)-H(121)O(10)#3	0.85	2.25	3.030(6)	152.5				
O(13)-H(131)O(9)#6	0.85	2.48	2.865(5)	108.7				
O(13)-H(131)O(8)#6	0.85	2.71	2.941(5)	97.3				
O(14)-H(141)N(3)	0.85	1.92	2.743(7)	161.7				
O(14)-H(142)O(6)#7	0.85	1.90	2.754(7)	177.3				

Table S2 Hydrogen bonds for compound 1

Symmetry transformations used to generate equivalent atoms:

#3 -*x*+1, -*y*, -*z*; #6 -*x*, -*y*, -*z*; #7 -*x*+1, -*y*+1, -*z*

Table S3 Hydrogen bonds for compound 2.								
D-HA/(°)	d(D-H)/(Å)	d(HA)/(Å)	d(DA)/(Å)	<(D-H-A)				
O(11)-H(111)O(6)#3	0.85	2.13	2.953(5)	163.9				
O(12)-H(121)O(10)#3	0.85	2.25	3.029(5)	152.4				
O(13)-H(131)O(9)#6	0.85	2.47	2.856(4)	108.6				
O(13)-H(131)O(8)#6	0.85	2.70	2.934(4)	97.3				
O(14)-H(141)N(3)	0.85	1.92	2.742(6)	161.7				
O(14)-H(142)O(6)#7	0.85	1.91	2.756(5)	177.0				

Symmetry transformations used to generate equivalent atoms:

#3 -*x*+1, -*y*, -*z*; #6 -*x*, -*y*, -*z*; #7 -*x*+1, -*y*+1, -*z*

Fig. S1 The asymmetric unit of 2.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2015

Fig. S2 Coordination environment of Dy1 (a) and Dy2 (b). Atoms with A, B in their labels are symmetry generated. Symmetry code: A: 1-x, -y, -z; B: 1+x, y, z.

Fig. S3 Coordination environment of Co. Atoms with E in their labels are symmetry generated. Symmetry code: E: -*x*, 1-*y*, -*z*.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2015

Fig. S4 PXRD patterns of 1 and 2.

Fig. S6 Temperature dependence of ac susceptibilities under zero field for 1 (left) and 2 (right).