Electronic Supplementary Information to:

Kinetics of cisplatin binding to short r(GG) containing miRNA mimics – influence of Na⁺ versus K⁺, temperature and hydrophobicity on reactivity

Alak Alshiekh,^a Maria Clausén^a and Sofi K.C. Elmroth^{a*}

^{*a*} Biochemistry and Structural Biology, KILU, Lund University, POBox 124, SE-221 00 Lund, Sweden. *Corresponding author; E-mail: <u>sofi.elmroth@biochemistry.lu.se</u>

Content

- Table S1: Melting temperatures together with observed rate constants at $C_{\text{Na+}} = C_{\text{K+}} = 122 \text{ mM}$
- Table S2: Observed pseudo-first-order rate constants at $C_{\text{Na+}} = 50 \text{ mM}$ with and without 10% EtOH
- Table S3:
 Second-order rate constants as a function of temperature
- Table S4: List of obtained proudcts $k_{2,app}C_{Na+}$
- Figure S1: Rosetta all-atom score vs rmsd
- Figure S2: Spectra and melting curves
- Figure S3: Primary kinetic data collected in Buffers B, C, and D together with concentration dependence in Buffer B
- Figure S4: Temperature dependence and Eyring plots

Duplex	$T_{\rm m}^{\ b}$ (°C) –	$10^4 \times k_{\rm obs}^{\ c} ({\rm s}^{-1})$					$k_{2,app}^{d}$ (M ⁻¹ s ⁻¹)	Reference
		C _{Pt} (μM) 7.5	C _{Pt} (μM) 15.0	C _{Pt} (μM) 22.5	C _{Pt} (μM) 30.0	C _{Pt} (μM) 45.0	-	
$C_{Na}^{+} = 122 \ mM$								
RNA-1-1	61.6 ± 0.2	0.54	1.6	2.2	2.7	3.5	7.7 ± 0.5	21
RNA-1-1-S	56.7 ± 0.1	1.6 ± 0.3	2.7 ± 0.2	3.3 ± 0.3	4.1 ± 0.2	5.6 ± 0.5	10.5 ± 0.6	2n
RNA-1-3	39.2 ± 0.1	2.5	5.4	7.5	9.4	14	29.7 ± 1.1	2n
RNA-1-3 ($T = 28 ^{\circ}C$)		0.44 ± 0.01	0.9 ± 0.2	1.5 ± 0.4	2.0 ± 0.4	2.7 ± 0.1	6.0 ± 0.5	This work
RNA-1-3-X	53.1 ± 0.2	1.1 ± 0.3	2.3 ± 0.1	3.5^{f}	4.7 ± 0.2	7.0 ± 0.2	15.8 ± 0.3	This work
$C_K^+ = 122 \ mM$								
RNA-1-1	59.5 ± 0.3	1.3 ± 0.3	2.2 ± 0.3	3.0 ± 0.1	3.8 ± 0.3	4.7 ± 0.2	9.2 ± 0.6	This work
RNA-1-1-S	55.0 ± 0.2	1.8 ± 0.4	2.7 ± 0.3	4.0 ± 0.5	4.7 ± 0.7	6.5 ± 1	12.6 ± 1.1	This work
RNA-1-3	36.5 ± 0.3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	$n.d.^{e}$
RNA-1-3 ($T = 28 ^{\circ}C$)		0.7 ± 0.4	1.2 ± 0.2	1.9 ± 0.4	2.6 ± 0.3	3.7 ± 0.5	8.0 ± 0.6	This work
RNA-1-3-X	50.9 ± 0.1	1.9 ± 0.9	3.3 ± 0.7	4.9 ± 0.6	6.1 ± 0.5	9.2 ± 0.7	19.4 ± 1.2	This work

Table S1. Summary of melting temperatures (*T*_m) and reaction rate constants (*k*_{obs} and *k*_{2,app}) for RNA-1-1, RNA-1-1-S, RNA-1-3, RNA-1-3-X.^{*a*}

 ${}^{a}C_{\rm T} = 3.0 \ \mu$ M and $T = 38 \ ^{\circ}$ C if nothing else stated. b Measurements performed in triplicates. Indicated errors correspond to the standard deviation. c Indicated errors for $k_{2,app}$ correspond to the standard error of the linear curve fit based on data points from five separate measurements; 7.5 μ M < C_{Pt} < 45 μ M. e Reaction over within mixing time. f Only measured once.

	$10^4 \times k_{\rm obs}^{\ \ b} ({\rm s}^{-1})$	$k_{2,app}^{c}$ (M ⁻¹ s ⁻¹)	
$T_{\rm m}$ (°C)	C _{1a} (μM) 15.0		
8 °C			
54.9 ± 0.1	3.1 ± 0.7	20.9 ± 5	
49.8 ± 0.1	3.9 ± 0.1	26.1 ± 0.2	
47.3 ± 0.3	5.9 ± 0.7	39.3 ± 4.7	
0% EtOH at 38 ℃			
53.7 ± 0.5	1.9 ± 0.2	12.9 ± 1.4	
46.7 ± 0.8	2.4 ± 0.4	16 ± 2.5	
46.3 ± 0.1	3.6 ± 0.2	24.3 ± 1.4	
$^{\circ}C$			
32.5 ± 0.2	2.4 ± 0.3	15.7 ± 1.8	
% EtOH at 28 $^{\circ}\!C$			
33.0 ± 0.2	1.6 ± 0.1	10.7 ± 0.5	
	$T_{m} (^{\circ}C)$ $8 ^{\circ}C$ 54.9 ± 0.1 49.8 ± 0.1 47.3 ± 0.3 $9\% EtOH at 38 ^{\circ}C$ 53.7 ± 0.5 46.7 ± 0.8 46.3 ± 0.1 $2 ^{\circ}C$ 32.5 ± 0.2 $\% EtOH at 28 ^{\circ}C$ 33.0 ± 0.2	$ \frac{10^{4} \times k_{obs}{}^{b} (s^{-1})}{T_{m} (^{\circ}C)} \frac{C_{1a} (\mu M)}{15.0} $ $ \frac{8 ^{\circ}C}{38 ^{\circ}C} \frac{54.9 \pm 0.1}{49.8 \pm 0.1} \frac{3.1 \pm 0.7}{49.8 \pm 0.1} \frac{3.9 \pm 0.1}{3.9 \pm 0.1} \frac{3.9 \pm 0.1}{47.3 \pm 0.3} \frac{5.9 \pm 0.7}{59 \pm 0.7} $ $ \frac{96}{C} EtOH at 38 ^{\circ}C} \frac{1.9 \pm 0.2}{46.7 \pm 0.8} \frac{2.4 \pm 0.4}{46.3 \pm 0.1} \frac{3.6 \pm 0.2}{3.6 \pm 0.2} $ $ \frac{9}{C} \frac{32.5 \pm 0.2}{33.0 \pm 0.2} \frac{2.4 \pm 0.3}{1.6 \pm 0.1} $	

Table S2. Summary of reaction rate constants (k_{obs} and $k_{2,app}$) in buffer with $C_{Na+} = 50$ mM, with and without 10% EtOH for RNA-1-1, RNA-1-3-X and RNA-1-3.^{*a*}

 a C_T = 3.0 μ M. b Measurements performed in triplicates. Indicated errors correspond to the standard deviation. ^cIndicated errors for the $k_{2,app}$ correspond to the standard deviation of triplicate data points.

Duplex	$T_{\rm m}^{\ b}$ (°C)	<i>Т</i> (°С)	$k_{2,app}^{c}$ (M ⁻¹ s ⁻¹)	ΔH^{\neq} (kcal mol ⁻¹)	ΔS^{\neq} (cal K ⁻¹ mol ⁻¹)
RNA-1-3	39.2 ± 0.1	23	$2.8\pm~0.2$	31 ± 3	49 ± 5
		28	7.9 ± 0.7		
		33	21.6 ± 0.5		
		38	36 ^f		
RNA-1-3-X	53.1 ± 0.2	33	7.6 ± 0.3	34 ± 3	57 ± 5
		38	15.4 ± 0.3		
		43	37.0 ± 0.3		
		48	111 ± 3		
RNA-1-1-S	56.7 ± 0.1	33	10.3 ± 0.5	23 ± 1	22 ± 1
		38	18 ± 1.3^{f}		
		43	35 ± 1.0		
		48	63.3 ± 0.6		
RNA-1-1	61.6 ± 0.2	33	6.9 ± 0.2	28 ± 2	36 ± 3
		38	10.7 ± 0.3^{f}		
		48	50 ± 15		
		58	222 ± 35		

Table S3. Summary of second-order rate constants as a function of temperature and activation
parameters for the reaction of 1a with RNA-1-1, RNA-1-1-S, RNA-1-3 and RNA-1-3-X.

 ${}^{a}C_{\rm T}$ = 3.0 µM, $C_{\rm Na+}$ = 122 mM. ^b Measurements performed in triplicates. ^ck_{2,app} was calculated as $k_{\rm obs}/C_{\rm Pt}$ (15 µM). Indicated error for $k_{2,\rm app}$ correspond to the standard deviation of triplicate data points with $C_{\rm Pt}$ = 15 µM. ^fData from Ref# 3n.

Duplex	$C_{\rm Na^+}({ m mM})$	$k_{2,app} (M^{-1}s^{-1})^a$	$k K_{\text{ass}}$ $(= k_{2,\text{app}} \cdot C_{\text{Na+}} (\text{s}^{-1}))^{a}$
RNA-1-1	50	21	1.05
	122	7.7	0.939
RNA-1-1-S	50	26.1	1.30
	122	10.5	1.28
RNA-1-3-X	50	39	1.95
	122	15.8	1.93
RNA-1-3	50	15.7^{b}	0.78 ^b
	122	6.0 b	0.73 ^b
	122	29.7	3.62

Table S4. Comparison of the products kK_{ass} for the reactions of **1a** with RNA-1-1, RNA-1-1-S, RNA-1-3-X, and RNA-1-3 after adjustment with respect to salt concentration in agreement with mechanism outlined in Eqns (2) – (5).

^{*a*} k_{2app} determined at 38 °C if nothing else stated, ^{*b*} k_{2app} determined at 28 °C.

Figure S1. Rosetta all-atom score *vs* rmsd for (A) RNA-1-1 and (B) RNA-1-3, showing convergence of the structure simulations.

Figure S2. (A) Spectra and (B) melting curves for RNA-1-3-X (dark blue), RNA-1-3 (light blue), RNA-1-1 (dark green), and RNA-1-1-S (light green). The spectra were recorded in Buffer A with $C_{\text{Na+}} = 122 \text{ mM}$ and $C_{\text{T}} = 3.0 \,\mu\text{M}$.

Figure S3. Absorbance change as a function of time (gray), together with fits of a single-exponential function to experimental data (solid lines, blue or purple), in buffered solution; $C_{\text{Na+}} = 50$ mM (Buffer C) after addition of **1a** to (A) RNA-1-1, (E) RNA-1-1-S, (I) RNA-1-3-X and (M) RNA-1-3. All measurements were conducted with $C_{1a} = 15.0 \,\mu\text{M}$, $C_T = 3.0 \,\mu\text{M}$. Absorbance change as a function of time, together with fits of a single-exponential function to experimental data (blue lines), in buffered solution; $C_{\text{Na+}} = 50$ mM (Buffer D) after addition of **1a** to (B) RNA-1-1, (F) RNA-1-1-S, (J) RNA-1-3-X and (N) RNA-1-3. All measurements were conducted with $C_{1a} = 15.0 \,\mu\text{M}$, $C_T = 3.0 \,\mu\text{M}$. Absorbance change as a function of time, together with fits of a single-exponential function to experimental data (purple lines) in buffered solution; $C_{K+} = 122$ mM (Buffer B) after addition of **1a** to (C) RNA-1-1, (G) RNA-1-1-S, (K) RNA-1-3-X and (O) RNA-1-3. All measurements were conducted with $C_{1a} = 7.5-45.0 \,\mu\text{M}$, $C_T = 3.0 \,\mu\text{M}$. Observed pseudo-first-order rate constants (k_{obs}) plotted as a function of C_{1a} in the interval 7.5–45.0 μ M, together with linear regression lines allowing for determination of $k_{2,app}$ from the slope; (D) RNA-1-1, (H) RNA-1-1-S, (L) RNA-1-3-X, and (P) RNA-1-3. All measurements were conducted in triplicates with $C_T = 3.0 \,\mu\text{M}$ and $C_{K+} = 122 \,\text{mM}$ (Buffer B).

Figure S4. Absorbance change as a function of temperature and time. Melting curve of (A) RNA-1-1, (D) RNA-1-1-S, (G) RNA-1-3, and (J) RNA-1-3-X. Absorbance change as a function of time after addition of **1a** to (B) RNA-1-1, (E) RNA-1-1-S, (H) RNA-1-3, and (K) RNA-1-3-X. All reactions were followed at $\lambda = 260$ nm, and conducted with $C_{1a} = 15.0 \mu$ M, $C_T = 3.0 \mu$ M and $C_{K+} = 122$ mM (Buffer B). Eyring plot of $\ln(k_{2,app}/T)$ as a function of 1/T for the reaction of **1a** with (C) RNA-1-1 (F) RNA-1-1-S, (I) RNA-1-3, and (L) RNA-1-3-X. Figures (C) and (I) contain one datapoint each retrived from Ref#2n (compare Table S3).