Electronic Supplementary Information

Anion Coordination Selective [Mn₃] and [Mn₄] Assemblies: Synthesis, Structural Diversity, Magnetic Properties and Catechol Oxidase Activity

Moumita Pait,^a Michael Shatruk^b and Debashis Ray^{a,†}

^aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
Fax: (+91) 3222-82252; Tel: (+91) 3222-283324; E-mail: <u>dray@chem.iitkgp.ernet.in</u>
^bDepartment of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306

Scheme S1. Synthesis of complexes

Scheme S2. Formation of complexes 1 and 2 through aggregation

Scheme S3. Proposed reaction sequence for formation of the trimers and tetramers

Scheme S4. Formation of complexes 3 and 4

Fig. S1 FT-IR spectrum of complex 2

Fig. S2 FT-IR spectrum of complexes 3 (left) and 4 (right).

Fig. S3 Linear trinuclear units in complex 1

Fig. S4 Core structure of **3** with the O-Mn-O Jahn–Teller axis on the terminal atoms indicated as black bonds.

Fig. S5. Intramolecular H-bond present in complex 3.

Table S1 Selected bond angles (°) for $1.2H_2O$ and $2.H_2O$ ·MeOH

1·2H ₂ O			
O2-Mn1-O1	174.68(7)	N1-Mn1-O7	85.46(8)
O2-Mn1-O4	98.55(7)	O6-Mn1-O7	179.60(8)
O1-Mn1-O4	86.58(7)	O4-Mn1-O7	84.95(8)
O2-Mn1-N1	83.24(8)	O3-Mn2-O2	89.11(7)
O1-Mn1-N1	91.47(8)	O3*-Mn2-O2*	90.89(7)
O4-Mn1-N1	170.19(8)	O3-Mn2-O5*	87.55(8)

O2-Mn1-O6	91.32(7)	01-Mn1-07	90.69(9)
01-Mn1-O6	89.60(8)	O3-Mn2-O5	92.45(8)
O4-Mn1-O6	95.34(8)	O2-Mn2-O5	88.71(7)
N1-Mn1-O6	94.26(8)	O2*-Mn2-O5*	91.29(7)
O2-Mn1-O7	88.36(9)		

$2 \cdot H_2 O \cdot MeOH$			
O2-Mn1-O1	173.82(18)	O2-Mn1-O7	88.98(19)
O1-Mn1-O4	86.33(18)	O4-Mn1-O7	85.4(2)
O2-Mn1-O4	99.71(17)	N1-Mn1-O7	91.5(2)
O1-Mn1-N1	90.6(2)	O6-Mn1-O7	170.06(18)
O2-Mn1-N1	83.26(19)	O2-Mn2-O3	91.34(15)
O4-Mn1-N1	175.67(19)	O2-Mn2-O3*	88.66(15)
O1-Mn1-O6	90.5(2)	O2-Mn2-O5	88.97(17)
O2-Mn1-O6	91.37(18)	O2-Mn2-O5*	91.03(17)
O4-Mn1-O6	84.8(2)	O3-Mn2-O5	87.3(2)
N1-Mn1-O6	98.4(2)	O3*-Mn2-O5*	92.7(2)
O1-Mn1-O7	90.2(2)		

Table S2 Bond-Valence Sums for the Mn Atoms of Complexes 1-4

Complex	Atom	Mn ^{II}	Mn ^{III}
1	Mn1	3.25	<u>3.02</u>
	Mn2	<u>2.04</u>	1.86
2	Mn1	3.27	<u>3.02</u>
	Mn2	<u>2.07</u>	1.90
3	Mn1	3.10	<u>2.87</u>
	Mn2	3.05	<u>2.82</u>
	Mn3	3.01	<u>2.79</u>
	Mn4	3.05	<u>2.84</u>
4	Mn1	3.16	<u>2.92</u>
	Mn2	3.25	<u>3.01</u>
	Mn3	3.16	<u>2.95</u>
	Mn4	3.13	<u>2.91</u>

3·ClO4·DMSO			
O3-Mn1-O6	<mark>84.52(17)</mark>	O1-Mn3-O6	<mark>95.64(19)</mark>
O6-Mn1-O10	100.75(18)	O6-Mn3-O2	93.33(17)
O3-Mn1-N1	83.2(2)	O1-Mn3-N3	<mark>89.3(2)</mark>
O10-Mn1-N1	<mark>91.6(2)</mark>	O2-Mn3-N3	<mark>81.9(2)</mark>
O3-Mn1-O11	93.21(17)	O1-Mn3-O3	<mark>96.06(19)</mark>
O6-Mn1-O11	<mark>88.98(16)</mark>	O6-Mn3-O3	<mark>76.42(16)</mark>
O10-Mn1-O11	<mark>85.87(18)</mark>	O2-Mn3-O3	<mark>92.31(17)</mark>
N1-Mn1-O11	<mark>92.91(19)</mark>	N3-Mn3-O3	101.85(19)
O3-Mn1-O7	<mark>94.97(19)</mark>	O1-Mn3-O4	<mark>90.91(19)</mark>
O6-Mn1-O7	<mark>98.64(18)</mark>	O6-Mn3-O4	<mark>79.73(17)</mark>
O10-Mn1-O7	85.3(2)	O2-Mn3-O4	<mark>84.33(17)</mark>
N1-Mn1-O7	<mark>81.3(2)</mark>	N3-Mn3-O4	101.5(2)
O3-Mn1-O10	174.62(18)	O1-Mn3-O2	168.94(19)
O6-Mn1-N1	167.7(2)	O6-Mn3-N3	174.9(2)
O11-Mn1-O7	169.31(18)	O3-Mn3-O4	155.67(17)
O8-Mn2-O6	93.02(18)	O12-Mn4-O2	<mark>91.70(19)</mark>
O5-Mn2-O6	<mark>93.23(18)</mark>	O11-Mn4-O2	<mark>94.94(18)</mark>
O8-Mn2-N2	83.0(2)	O12-Mn4-N4	90.2(2)
O5-Mn2-N2	<mark>90.3(2)</mark>	O11-Mn4-N4	<mark>83.7(2)</mark>
08-Mn2-O9	<mark>88.98(19)</mark>	O12-Mn4-O8	<mark>84.71(19)</mark>
O5-Mn2-O9	<mark>94.8(2)</mark>	O11-Mn4-O8	<mark>92.69(18)</mark>
O6-Mn2-O9	<mark>96.31(17)</mark>	O2-Mn4-O8	<mark>91.74(17)</mark>
N2-Mn2-O9	<mark>90.3(2)</mark>	N4-Mn4-O8	<mark>98.83(19)</mark>
O8-Mn2-O4	<mark>92.62(18)</mark>	O12-Mn4-N5	<mark>90.9(2)</mark>
O5-Mn2-O4	<mark>84.3(2)</mark>	011-Mn4-N5	<mark>92.0(2)</mark>
O6-Mn2-O4	<mark>77.96(16)</mark>	O2-Mn4-N5	<mark>85.3(2)</mark>
N2-Mn2-O4	<mark>95.55(19)</mark>	N4-Mn4-N5	84.2(2)
O8-Mn2-O5	172.3(2)	O12-Mn4-O11	172.9(2)
O6-Mn2-N2	172.3(2)	O2-Mn4-N4	<mark>169.4(2)</mark>
O9-Mn2-O4	174.12(17)	O8-Mn4-N5	174.7(2)
Mn1-O6-Mn2	136.0(2)	Mn1-O3-Mn3	<mark>94.96(17)</mark>
Mn1-O6-Mn3	103.17(18)	Mn1-O11-Mn4	125.5(2)
Mn2-O6-Mn3	115.3(2)	Mn2-O8-Mn4	127.4(2)
Mn2-O4 _{DMSO} -	<mark>85.83(15)</mark>	Mn3-O2-Mn4	<mark>130.4(2)</mark>

Table S3 Selected bond angles (°) for $3 \cdot \text{ClO}_4 \cdot \text{DMSO}$ and $4 \cdot \text{ClO}_4 \cdot \text{DMSO}$

Mn3				
$4 \cdot \text{ClO}_4 \cdot \text{DMSO}$				
O3-Mn1-O6	<mark>84.7(2)</mark>	O1-Mn3-O6	<mark>95.1(2)</mark>	
O6-Mn1-O10	101.4(2)	O6-Mn3-O2	<mark>93.6(2)</mark>	
O3-Mn1-N1	82.5(2)	O1-Mn3-N3	<mark>89.5(3)</mark>	
O10-Mn1-N1	91.4(2)	O2-Mn3-N3	82.0(2)	
O3-Mn1-O11	92.8(2)	O1-Mn3-O3	<mark>96.5(2)</mark>	
O6-Mn1-O11	<mark>87.61(19)</mark>	O6-Mn3-O3	77.0(2)	
O10-Mn1-O11	87.0(2)	O2-Mn3-O3	92.0(2)	
N1-Mn1-O11	91.1(2)	N3-Mn3-O3	101.5(2)	
O3-Mn1-O7	94.4(2)	O1-Mn3-O4	90.1(2)	
O6-Mn1-O7	100.6(2)	O6-Mn3-O4	80.0(2)	
O10-Mn1-O7	85.1(2)	O2-Mn3-O4	84.9(2)	
N1-Mn1-O7	82.3(2)	N3-Mn3-O4	101.2(2)	
O3-Mn1-O10	174.0(2)	O1-Mn3-O2	<mark>169.0(2)</mark>	
O6-Mn1-N1	167.0(2)	O6-Mn3-N3	175.3(2)	
O11-Mn1-O7	169.6(2)	O3-Mn3-O4	156.5(2)	
O8-Mn2-O6	92.7(2)	O12-Mn4-O2	91.0(2)	
O5-Mn2-O6	93.7(2)	O11-Mn4-O2	92.7(2)	
O8-Mn2-N2	82.5(2)	O12-Mn4-N4	90.9(3)	
O5-Mn2-N2	<mark>90.8(3)</mark>	O11-Mn4-N4	83.8(2)	
08-Mn2-O9	90.0(2)	O12-Mn4-O8	89.4(2)	
O5-Mn2-O9	92.5(3)	O11-Mn4-O8	<mark>96.1(2)</mark>	
O6-Mn2-O9	<mark>95.9(2)</mark>	O2-Mn4-O8	97.4(2)	
N2-Mn2-O9	<mark>89.6(2)</mark>	N4-Mn4-O8	100.5(2)	
O8-Mn2-O4	<mark>92.1(2)</mark>	O12-Mn4-O13	82.1(1)	
O5-Mn2-O4	<mark>86.1(2)</mark>	O11-Mn4-13	92.5(9)	
O6-Mn2-O4	78.3(2)	O2-Mn4-13	80.6(1)	
N2-Mn2-O4	<mark>96.4(2)</mark>	N4-Mn4-O13	81.8(7)	
O8-Mn2-O5	172.9(2)	O12-Mn4-O11	173.0(2)	
O6-Mn2-N2	172.7(3)	O2-Mn4-N4	162.0(2)	
O9-Mn2-O4	173.9(2)	O8-Mn4-O13	171.2(3)	
Mn1-O6-Mn2	136.6(3)	Mn1-O3-Mn3	94.5(2)	
Mn1-O6-Mn3	102.8(2)	Mn1-O11-Mn4	124.8(2)	
Mn2-O6-Mn3	<mark>115.9(3)</mark>	Mn2-O8-Mn4	126.2(3)	
Mn2-O4 _{DMSO} -	<mark>85.11(18)</mark>	Mn3-O2-Mn4	127.2(3)	

Fig. S6 Increase of absorption spectra after addition of 100 equiv of 3,5-DTBC to a solution containing complex 2 (1×10^{-6} M) in MeCN. The spectra were recorded after every 5 min up to 1 h in MeCN.

Fig. S7 Absorption spectra of complexes 1 (left) and 3 (right) $(1 \times 10^{-6} \text{ M})$ with 100 equiv of 3,5-DTBC in MeOH. The spectra were recorded after every 15 min up to 3 h in MeOH.

Fig. S8 Plot of initial rates vs substrate concentration for the oxidation reaction catalyzed by complexes 2 (left) and 4 (right). Inset shows the Lineweaver–Burk plot.

Fig. S9 Electrospray mass spectrum (ESI-MS positive) of complex 1 in acetonitrile.

Fig. S10 Electrospray mass spectrum (ESI-MS positive) of complex 3 in acetonitrile.

Fig. S11 Electrospray mass spectrum (ESI-MS positive) of a 1:100 1/3,5-DTBC mixture in

acetonitrile, recorded within 5 min of mixing.

Fig. S12 Electrospray mass spectrum (ESI-MS positive) of a 1:100 **3**/3,5-DTBC mixture in acetonitrile, recorded within 5 min of mixing.