Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

A highly sensitive, selective ratiometric fluorescent probe for

cobalt (II) and its applications for biological imaging

Shenyi Zhang, Mei Zhao, Weiping Zhu*, Yufang Xu * and Xuhong Qian*

*Shanghai Key Laboratory of Chemical Biology, State Key Laboratory of Bioreactor Engineering, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237,

China;

E-mail: yfxu@ecust.edu.cn, xhqian@ecust.edu.cn; Fax: +86 21-64252603;

Contents

1). Materials and general methods	S 2
2). Synthesis	S 2
Scheme 1. Synthesis of Fluorescent probe E3	S 2
Preparation of 1	S 2
Preparation of 2	S 2
Preparation of E3	S 3
3). Supplementary data	S 3
Figure S1. The absorbtion spectra of E3	S 3
Figure S2. The fluorescence emission spectra of E3	S 3
Figure S3. Job plot analysis of E3 and Co ²⁺	S 4
Figure S4. Job plot analysis of E3 and Co ²⁺	S 4
Figure S5. The fitting curve of fluorescence intensity of E3 with Co ²⁺	S 4
Figure S6. The ESI-MS assay on detection of Co ²⁺ with probe E3	S 5
Figure S7. ¹ H NMR spectrum of E3	S 5
Figure S8. ¹³ C NMR spectrum of E3	S 6
Figure S9. HRMS spectrum of E3	S 6

1. Materials and general methods:

N, N'–dimethylformamide (DMF) was distilled from calcium hydride (CaH₂) under anhydrous condition. Other solvents were of analytic grade. All reactions were carried out under a helium atmosphere with analytic grade solvents, unless noted. Mass spectra were measured on a HP 1100 LC-MS spectrometer. Double distilled water was used to prepare all aqueous solutions. All spectroscopic measurements were performed in 50 mM HEPES/EtOH (v/v : 60/40) buffer at pH 7.2. Fluorescence spectra were determined on a VARIAN CARY Eclipse Fluorescence spectrophotometer. Absorption spectra were determined on a VARIAN CARY 100 Bio UV-Visible spectrophotometer. ¹H NMR and ¹³C NMR were measured on a BrukerAV-400 spectrometer with chemical shifts reported in ppm (in CDCl₃; TMS as internal standard). All pH measurements were made with a Sartorius basic pH-Meter PB-10.

All reactions were monitored by thin-layer chromatography (TLC) using UV-light (254 nm) and Flu-light (365 nm). Silica gel (300 - 400 mesh) was used for column chromatography.

2. Synthesis:

Scheme 1 Synthesis of fluorescent probe E3.

Preparation of 1:

Compounds 1 was prepared according to the reported procedure.¹

Preparation of 2:

To a solution of compound **1** (500 mg, 1.55 mmol) in EtOH, diglycolamin (163 mg, 1.55 mmol) was added, and the mixture was stirred refluxing for 2 h. Then the mixture cooled to room temperature, and concentrated in vacuo to afford yellow oil crude compounds. The crude product was purified by column chromatography (silica gel: 100 mL, eluent: DCM/MeOH 50/1) to afford yellow powder **2** in 60 % yield. ¹H NMR (400 MHz, CDCl₃, 20 °C): δ 8.73 (d, *J* = 8.0 Hz, 1 H), 8.53 (d, *J* = 8.0 Hz, 1 H), 8.23 (d, *J* = 8.0 Hz, 1 H), 7.94 (d, *J* = 8.0 Hz, 1 H), 4.45 (t, *J* = 5.6 Hz, 5.2 Hz, 2 H), 3.87 (t, *J* = 5.2 Hz, 5.6 Hz, 2 H), 3.70 – 3.66 (m, 4 H), 2.1 (s, 1H).

Preparation of E3:

To a solution of compound 2 (205 mg, 0.50 mmol) in ethylene glycol monomethyl ether, 2-Aminomethyl pyridine (542 mg, 5.01 mmol) was added, and the mixture was stirred at reflux for 6

¹ Y. F. Xu, F. Lu, Z. C. Xu, T. Y. Cheng and X. H. Qian, Sci. china ser. B-chem. 2009, 52, 771.

h. Then the mixture cooled to room temperature, and concentrated in vacuo to afford yellow oil crude compounds. The crude product was purified by column chromatography (silica gel: 100 mL, eluent: DCM/MeOH 20/1) to afford yellow powder **E3** in 42 % yield. ¹H NMR (400 MHz, CDCl₃, 20°C): δ 8.44 (d, *J* = 8.4 Hz, 2 H), 8.31 (d, *J* = 4.8 Hz, 2 H), 7.73 – 7.67 (m, 4 H), 7.41 (d, *J* = 7.6 Hz, 2 H), 7.21 – 7.18 (m, 2 H), 6.80 (d, *J* = 8.8 Hz, 2 H), 4.68 (s, 2 H), 4.66 (s 2 H), 4.42 (t, *J* = 5.6 Hz, 5.6 Hz, 2 H), 3.86 (t, *J* = 5.6 Hz, 5.6 Hz, 2H), 3.76 (s, 1 H), 3.72 – 3.68 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃, 20°C): δ 170.74, 169.34, 164.96, 156.01, 152.06, 149.04, 136.84, 134.06, 122.52, 121.86, 111.71, 107.08, 72.23, 68.84, 61.91, 49.15, 39.08. HRMS (ESI⁺): m/z calcd for: C₂₈H₂₈N₅O₄⁺: 498.2141, found: [M+H]⁺ 498.2147.

3. Supplementary data:

Figure S1. The absorbtion spectra of **E3** with different concentrations in 50 mM HEPES/EtOH (v/v : 60/40) buffer at pH 7.2.

Figure S2. The fluorescence emission spectra of E3 with different concentrations in 50 mM HEPES/EtOH (v/v : 60/40) buffer at pH 7.2.

Figure S3. The changes in the absorbtion spectra of **E3** (10×10^{-6} M in 50 mM HEPES/EtOH (v/v : 60/40) buffer, pH 7.2) upon titration with Co(ClO₄)₂ from 1.0×10^{-6} M to 50×10^{-6} M.

Figure S4. Job plot analysis of **E3** and Co^{2+} in 50 mM HEPES/EtOH (v/v : 60/40) buffer at pH 7.2; The total molar concentration of **E3** and Co^{2+} is 1.0×10^{-5} M.

Figure S5. The fitting curve of fluorescence intensity at I_{474} nm/ I_{528} nm of **E3** versus increasing concentrations of Co²⁺ in water/EtOH solution (v/v : 60/40, 50 mM HEPES buffer, pH 7.2). The concentration of **E3** was 10×10⁻⁶ M.

Figure S6. The ESI-MS assay on detection of Co²⁺ with probe E3

Figure S7. ¹H NMR spectrum of E3

