Structural and Magnetic Studies on Three New Mixed Metal Copper(II) Selenites and Tellurites

Xue-Li Cao, Fang Kong, Zhang-Zhen He, and Jiang-Gao Mao*

Supporting Information

Table S1. IR data for CdCu(SeO₃)₂, HgCu(SeO₃)₂ and Hg₂Cu₃(Te₃O₈)₂.

- Figure S1. Simulated and experimental XRD powder patterns of $CdCu(SeO_3)_2$ (a), HgCu(SeO₃)₂ (b) and Hg₂Cu₃(Te₃O₈)₂ (c).
- Figure S2. A 1D $[Cu_2O_4(SeO_3)_2]^{8-}$ anionic chain along the *a* axis (a), a 2D $[Cu_2O_6(SeO_3)]^{10-}$ layer parallels to the *bc* plane (b), and the coordination geometries around Cu (c), Hg (d), Se(1) (e) and Se(2) (f) atoms in Hg_2Cu_3(Te_3O_8)_2.
- Figure S3. TGA and DSC curves of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).

Figure S4. IR spectra of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).

- Figure S5. UV-Vis absorption spectra of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).
- Figure S6. Optical diffuse reflectance spectra of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).

Figure S7. Plot of χT versus *T* for HgCu(SeO₃)₂.

Figure S8. Plot of χT versus T (a), and magnetization versus applied field at 2 K (b) as

well as heat capacity measured in zero magnetic fields (the inset) for $CdCu(SeO_3)_2$.

Figure S9. Plot of χT versus *T* for Hg₂Cu₃(Te₃O₈)₂.

	v(Te/Se-O)	v(Te/Se-O-Te/Se)
$Hg_2Cu_3(Te_3O_8)_2$	755, 681, 647	509, 443
HgCu(SeO ₃) ₂	796, 717, 671	522, 492, 432
CdCu(SeO ₃) ₂	809, 750, 706	538, 496, 405

Table S1. IR data for CdCu(SeO₃)₂, HgCu(SeO₃)₂ and Hg₂Cu₃(Te₃O₈)₂.

Figure S1. Simulated and experimental XRD powder patterns of $CdCu(SeO_3)_2$ (a), HgCu(SeO₃)₂ (b) and Hg₂Cu₃(Te₃O₈)₂ (c).

Figure S2. A 1D [Cu₂O₄(SeO₃)₂]⁸⁻ anionic chain along the *a* axis (a), a 2D [Cu₂O₆(SeO₃)]¹⁰⁻ layer parallels to the *bc* plane (b), and the coordination geometries around Cu (c), Hg (d), Se(1) (e) and Se(2) (f) atoms in Hg₂Cu₃(Te₃O₈)₂.

Figure S3. TGA and DSC curves of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).

Figure S4. IR spectra of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b) and $Hg_2Cu_3(Te_3O_8)_2$ (c).

Figure S5. UV-Vis absorption spectra of $CdCu(SeO_3)_2$ (a), $HgCu(SeO_3)_2$ (b), and $Hg_2Cu_3(Te_3O_8)_2$ (c).

Figure S6. Optical diffuse reflectance spectra of CdCu(SeO₃)₂ (a), HgCu(SeO₃)₂ (b) and

Figure S7. Plot of χT versus T for HgCu(SeO₃)₂.

Figure S8. Plot of χT versus T (a), and magnetization versus applied field at 2 K (b) as well as heat capacity measured in zero magnetic fields (the inset) for CdCu(SeO₃)₂.

Figure S9. Plot of χT versus T for Hg₂Cu₃(Te₃O₈)₂.