Supplementary Information

Excellent catalytic activity of magnetically recoverable Fe₃O₄graphene oxide nanocomposites prepared by a simple method

Prasenjit Mandal and Asoke P. Chattopadhyay*

Department of Chemistry, University of Kalyani, Kalyani 741235, India

Table S1. Dependence of yield on time and temperature of an A³ coupling reaction

Entry	Temperature (⁰ C)	Time (h)	Conversion (%)
1	80	6	52
2	90	6	58
3	80	16	74
4	60	16	68
5	90	16	84
6	120	16	93
7	Room	16	26
	Temperature		

Conditions: aldehyde (1 equiv), amine (1.2 equiv), alkyne (1.5 equiv), GO-Fe₃O₄ (50 mg, 0.3 mol% Fe₃O₄ np) in 5 mL solvent or neat for 11 h, temperature above 90 0 C.

Table S2. Size screening of GO-Fe₃O₄ nanocomposite on A³ coupling of cyclohexanecarbaldehyde, phenylacetylene, and piperidine.

Entry	Particle size (nm)	Time (h)	Conversion (%)	Yield (%)
1	15	24	94	87
2	25	24	97	93
3	35	24	87	85
4	55	24	91	78
5	80	24	78	67

Conditions: aldehyde (1 equiv), amine (1.2 equiv), alkyne (1.5 equiv), GO-Fe₃O₄ (50 mg, 0.3 mol% Fe₃O₄ np) in 5 mL solvent or neat for 11 h, temperature above 90 0 C.

Fig. S1. FTIR spectrum of Fe₃O₄-GO nanocomposites after recycling 12 times

Fig. S2. XRD spectrum of Fe_3O_4 -GO nanocomposites after recycling 12 times. GO peaks are denoted in black, Fe_3O_4 peaks are in red and Fe_2O_3 peaks are in blue.

Fig. S3. ¹H NMR of 1-[1-Cyclohexyl-3-(4-methylphenyl)-2-propynyl]piperidine (2a)

Fig. S4. ¹H NMR of 1-(1-cyclohexyl-3-(4-methoxyphenyl)prop-2-ynyl)piperidine (3a)

Fig. S5. ¹H NMR of 1-[1-Cyclohexyl-3-(1-naphathyl)-2-propynyl]piperidine (4a)

Fig. S6. ¹H NMR of 1-(1-cyclohexyl-3-(3-methoxyphenyl)prop-2-ynyl)piperidine (5a)

Fig. S7. ¹H NMR of 1-(3-(4-chlorophenyl)-1-cyclohexylprop-2-ynyl)piperidine (6a)

Fig. S8. ¹H NMR of *N*-(1-Isopropyl-3-phenyl-2-propynyl)piperidine (8a)

Fig. S9. ¹H NMR of 1-[1-(1-Ethylpropyl)-3-phenyl-2-propynyl]piperidine (9a)

9a

Fig. S10. ¹H NMR of *N*-(3-Phenyl)-prop-2-ynyl)piperidine (10a)

Fig. S11. ¹H NMR of *N*-(1-Isopropyl-3-phenyl-2-propynyl)morpholine (11a)

Fig. S12. ¹H NMR of 1-[1-Cyclohexyl-3-(4-methylphenyl)-2-propynyl]pyrrodine (12a)

Fig. S13. Mass spectrum of 4-(1-phenyl-3-(pyridine-2-yl) prop-2-ynyl) morpholine (13a)

Fig. S14. Mass spectrum of 1-(1-phenyl-3-(thiophen-2-yl) prop-2-ynyl) piperidine (14a)