Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

An Unprecedented Up-Field Shift in ¹³C NMR Spectrum for Carboxyl Carbon of Lantern-Type Dinuclear Complex TBA[Ru₂(O₂CCH₃)₄Cl₂] (TBA⁺ = Tetra(n-butyl)ammonium Cation) Yuya Hiraoka,^a Takahisa Ikeue,*^a Hiroshi Sakiyama,^b Frederic Guegan,^c Dominique Luneau,^c Gillon Beatrice,^d Ichiro Hiromitsu,^e Daisuke Yoshioka,^f Masahiro Mikuriya,*^f Yusuke Kataoka^a and Makoto Handa*^a

E-mail:handami@riko-shimane-u..ac.jp

^bDepartment of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan

^cLaboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Beernard Lyon 1, Campus de La Doua, 69622

Villeurbanne Cedex, France

^dLaboratoire Léon Brillouin CEA/CNRS, UMR0012, Centre d'Etudes de Saclay, 91191, Gif sur Yvette, France

^eDepartment of Physics and Materials Science, Interdisciplinary Graduate School of Science and Engineering, Shimane University,

1060 Nishikawatsu, Matsue 690-8504

^f Department of ^bChemistry and Research Center for Coordination Molecule-based Devices, School of Science and Technology,

Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.

^a Department of Chemistry, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan

Experimental Section

Synthesis of 1

Ru₂(O₂CCH₃)₄Cl (200 mg, 0.4 mmol) and 0.4mmol TBACl (Tetra(*n*-butyl)ammonium chloride, ca.120mg) were stirred in CH₂Cl₂. After several hours this solution became clear. To this solution added hexane, and then the precipitate was collected by suction. The yield was 290mg (93% based on Ru₂(O₂CCH₃)₄Cl). Anal. Calc. for C₂₄H₄₈Cl₂NO₈Ru₂ : C, 38.35; H, 6.44; N, 1.86. Found: C, 38.31; H, 6.04; N, 2.00. IR(KBr, cm⁻¹) =3541(w), 3461(w), 2961(w), 2875(w), 1437(vs), 1347(w), 688(s)

¹H NMR (500MHz, CD₂Cl₂, 25°C) δ 0.4 (s, 12H, TBA⁺), -0.7 (s, 8H, TBA⁺), -2.8 (s, 8H, TBA⁺), -3.5 (s, 8H, TBA⁺), -42.6 (s, 12H, CH₃).

¹³C NMR (125MHz, CD₂Cl₂, 25°C) δ 56.9 (t, J= 144Hz, TBA⁺), 20.0 (t, J=131Hz, TBA⁺), 17.5 (t, J=126Hz, TBA⁺), 12.4 (q, J=126Hz, TBA⁺), -140 (q, J=126Hz, CH₃), -763 (s, CO₂).

Evaluation of contact shift ($\delta_{contact}$)

The δ_{contact} values were evaluated by using the following equation (see ref. 22):

$$\delta_{\text{contact}} = m(S+1)\rho_{\text{ad}}/T$$

where S (=3/2) is the spin state, ρ_{ab} is Fermi contact spin density at the nucleus of interest (DFT calculation of 1 afforded $\rho_{ab}(\text{in au}) = -4.715 \times 10^{-3}$ (per carboxyl carbon) and -1.000×10^{-3} (per methyl carbon)), *T* is the absolute temperature (298.15 K), and *m* is a collection of physical constants:

$$m = (\mu_0 \mu_B^2 g_e^2)/9k = 23.5 \times 10^6 \text{ ppm K au}^{-1}$$

Chemical formula : C₂₆H₅₂Cl₆NO₈Ru₂ Formula weight = 921.53T = 90(2)K Space group : $P\overline{1}$ Crystal system : triclinic a = 11.9262(14) Å $\alpha = 76.860(2)^{\circ}$ b = 12.4678(15) Å $\beta = 82.601(2)^{\circ}$ c = 13.3115(16) Å $\gamma = 86.546(2)^{\circ}$ $V = 1910.5(4) \text{ Å}^3$ Z = 2 $D_x = 1.602 \text{ g/cm}^3$ Radition : Mo K α ($\lambda = 0.71073$) μ (Mo K α) = 1.252mm⁻¹ F(000) = 938Crystal size = $0.60 \times 0.53 \times 0.30 \text{ mm}^3$ No. of reflections collected = 11700No. of indecendent reflectinos = 8366 θ range for data collection : 1.58 to 28.31°. Data / restraints / parameters : 8366 / 0 / 438 Goodness-of-fit on $F^2 = 1.074$ *R* indices $[I \ge 2\sigma(I)]$: *R*1 =0.0313, w*R*2 = 0.0838 *R* indices (all data) : R1 = 0.0368, wR2 = 0.0859 $(\Delta/\sigma)_{\rm max} = 0.002$ $(\Delta \rho)_{\rm min} = -0.611 \text{ Å}^{-3}$ $(\Delta \rho)_{max} = 1.084 \text{ Å}^{-3}$ Measurement: Bruker Smart APEX CCD difractometer Program system: SHELXTL Structure determination: Direct methods (SHELXS-97) Refinement: full: full matrix least-squares (SHELXL-97) CCDC deposition number: 998328

Ru1-Ru1A ⁱⁱ 2.3019(4)Ru2-Ru2A ⁱⁱ⁾ 2.3006(5)Ru1-O12.0288(17)Ru2-O52.0297(18)Ru1-O22.0293(17)Ru2-O62.0254(19)Ru1-O32.0306(16)Ru2-O72.0322(18)Ru1-O42.0279(1)Ru2-O82.0193(18)Ru1-C112.5316(6)Ru2-C122.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)		0	- () -	
Ru1-O12.0288(17)Ru2-O52.0297(18)Ru1-O22.0293(17)Ru2-O62.0254(19)Ru1-O32.0306(16)Ru2-O72.0322(18)Ru1-O42.0279(1)Ru2-O82.0193(18)Ru1-C112.5316(6)Ru2-C122.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)C11-Ru1-Ru1A ⁱ 176.540(18)C12-Ru2-Ru2A ⁱⁱ 176.55(2)	Ru1-Ru1A ⁱ⁾	2.3019(4)	Ru2-Ru2A ⁱⁱ⁾	2.3006(5)
Ru1-O22.0293(17)Ru2-O62.0254(19)Ru1-O32.0306(16)Ru2-O72.0322(18)Ru1-O42.0279(1)Ru2-O82.0193(18)Ru1-C112.5316(6)Ru2-C122.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)C11-Ru1-Ru1A ⁱⁱ 176.540(18)C12-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	Ru1-O1	2.0288(17)	Ru2-O5	2.0297(18)
Ru1-O32.0306(16)Ru2-O72.0322(18)Ru1-O42.0279(1)Ru2-O82.0193(18)Ru1-Cl12.5316(6)Ru2-Cl22.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	Ru1-O2	2.0293(17)	Ru2-O6	2.0254(19)
Ru1-O42.0279(1)Ru2-O82.0193(18)Ru1-Cl12.5316(6)Ru2-Cl22.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	Ru1-O3	2.0306(16)	Ru2-O7	2.0322(18)
Ru1-Cl12.5316(6)Ru2-Cl22.5181(7)O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	Ru1-O4	2.0279(1)	Ru2-O8	2.0193(18)
O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	Ru1-Cl1	2.5316(6)	Ru2-Cl2	2.5181(7)
O1-Ru1-O388.74(7)O5-Ru2-O789.36(7)O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)				
O1-Ru1-O490.80(7)O5-Ru2-O890.70(8)O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	O1-Ru1-O3	88.74(7)	O5-Ru2-O7	89.36(7)
O2-Ru1-O390.98(7)O6-Ru2-O790.00(7)O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱⁱ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	O1-Ru1-O4	90.80(7)	O5-Ru2-O8	90.70(8)
O2-Ru1-O489.42(7)O6-Ru2-O889.89(7)Cl1-Ru1-Ru1A ⁱ⁾ 176.540(18)Cl2-Ru2-Ru2A ⁱⁱ⁾ 176.55(2)	O2-Ru1-O3	90.98(7)	O6-Ru2-O7	90.00(7)
Cl1-Ru1-Ru1A ⁱⁱ 176.540(18) Cl2-Ru2-Ru2A ⁱⁱⁱ 176.55(2)	O2-Ru1-O4	89.42(7)	O6-Ru2-O8	89.89(7)
	Cl1-Ru1-Ru1A ⁱ⁾	176.540(18)	Cl2-Ru2-Ru2A ⁱⁱ⁾	176.55(2)

Table S2. Selected bond Distances (Å) and Angles (°) of 1

Symmetry codes : i) 2-x, -y, -z ii) 1-x, 1-y, 1-z

Calculation models	$E_{1/2}(Ru_2^{4+} / Ru_2^{5+})$	$E_{1/2}(Ru_2^{5+} / Ru_2^{6+})$
[Ru ₂ (O ₂ CCH ₃) ₄ Cl ₂] ⁻	-0.32	1.33
[Ru ₂ (O ₂ CCH ₃) ₄ Cl]	0.06	2.11
$\left[\mathrm{Ru}_{2}(\mathrm{O}_{2}\mathrm{CCH}_{3})_{4}\right]^{+}$	0.76	3.14
Experimental ^{a)}	-0.34	1.33

Table S3. Theoretically and experimentally obtained redox potentials for Ru_2^{4+}/Ru_2^{5+} and Ru_2^{5+}/Ru_2^{6+} (V vs. SCE)

a) See text.

Fig. S1. ORTEP drawing of the Ru2-Ru2A dinuclear unit of 1•2CH₂Cl₂ showing the thermal ellipsoids at 25% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2. Packing diagram of 1. Hydrogen atoms and solvent molecules are omitted for clarity.

Fig. S3 Plots of μ_{eff} versus *T* for **1**, red line being drawn with the parameter values described in the text [(**a**) top]. Plots of $\chi_{M}T$ for **1**, solid lines being drawn with the parameter values described in the text [(**b**) bottom].

Fig. S4 EPR spectrum of 1 (a) in solid at 4K. The simulated spectrum (b) is drawn with the parameter values in the text. 1 G = 0.1 mT.

Fig. S5 Absorption spectrum of 1 in CH_2Cl_2 [(a) top] and diffuse reflectance spectrum of 1 [(b) bottom].

Fig. S6 1 H NMR Spectrum of 1 in CD₂Cl₂ at 25°C.

Fig. S7. ¹³C NMR Spectrum of $[Ru_2{O_2^{13}C(CH_2)_2CH_3}_4Cl_2]^-$ [(**a**) top] and $[Ru_2{O_2C(CH_2)_2CH_3}_4Cl_2]^-$ [(**b**) bottom], which were measured by adding TBA(Cl) to $[Ru_2{O_2^{13}C(CH_2)_2CH_3}_4Cl]$ or $[Ru_2{O_2C(CH_2)_2CH_3}_4Cl]$ in CD_2Cl_2 at 25°C.

Fig. S8. ¹³C NMR Spectrum of $[Ru_2{O_2C(CH_2)_2CH_3}_4]BF_4$, which was measured in CD_2Cl_2 at 25°C.

Fig. S9. Cyclic voltammogram(CV) of complex 1 in dichloromethane; scan rate = 50 mV s⁻¹, [complex] = 1×10^{-3} M, [TBA(Cl)] = 0.1 M. Glassy carbon and Pt wire were used as working and counter electrodes, respectively.

Fig. S10. Selected MOs of $[Ru_2(O_2CCH_3)_4Cl_2]^{-}$. The bond characters, $\sigma(\sigma^*)$, $\pi(\pi^*)$, and $\delta(\delta^*)$, based on the direct Ru-Ru interaction are described with the blue colored letters.