Electronic Supplementary Information

An HASApf-Redoxin Complex causing Asymmetric Catalytic Oxidation via the Regenerative Formation of a Reactive Oxygen Species

Hiroyuki Nagaoka*

Sanyo Shokuhin Co., Ltd. R & D, 555-4 Asakura, Maebashi, Gunma 371-0811, Japan

E-mail: hnagaoka@sanyofoods.co.jp, Tel: +81-27-220-3471, Fax: +81-27-220-3477

Abbreviations: HasApf: heme acquisition system A from *Pseudomonas fluorescens* Pf-5, ME: membrane-bound enzymes, PP: pea protein, DMSO: dimethyl sulfoxide, PP-gel: calcium-alginate gel containing PP, GA: glutaraldehyde, CMME: compound-modified ME, AGME: PEG (MW: 4000/1000 = 1/2)-aggregated ME, *S*-1: *S*-(+)-1-(6-methoxynaphthalen-2-yl)ethanol, *S*-2: *S*-(+)-1-(2-naphthyl)ethanol, ICP-AES: inductively coupled plasma-atomic emission spectroscopy, IC: ion chromatography. ESR: electron spin resonance, FTIR: Fourier-transform infrared spectroscopy, Fdx: ferredoxin.

Table of Contents

1.	General procedure for reactions using CMME and AGME	S2
2.	Gel-filtration for given a single band from supernatant 2	S 3
3.	SDS-page for given a single band from supernatant 2	S 5
4.	FTIR/X-ray spectrums for a solfate (iron) heme with dried forms	S 5
5.	Chromatograms of the N-terminal amino-acid sequence of band-F	.58
6.	References	S8

1. General procedure for reactions using CMME and AGME

A calibration curve configured, the chromatograms of the *rac*-1 biotransformation with CMME, and the raw data of the *rac*-1 biotransformation with CMME/ME suspension were shown. Enantiomeric excess (ee) values, chemical yield ratio (% yield)/convertion ratio of all compounds were obtained from chiral HPLC analysis.

1-1. Calibration curve configured using HPLC.

The ee was calculated for either *rac*-1 (0.8 mM or 1.2 mM) or *rac*-2 (0.8 mM or 1.2 mM), which were separated with either a Daicel Chiralcel OB-H column ((S)-isomer/(R)-isomer/product ketone = 7.8/8.8/11.6 min) or a Daicel Chiralpak AS-H column ((S)-isomer/(R)-isomer/product ketone = 7.5/8.25/9.5 min) connected to an HPLC LC-10A system (Shimadzu). Analytical conditions were as follows: mobile phase, n-hexane/IPA: 9/1, flow rate: 1.0 mL/min, temperature: 30 °C, wavelength: UV 254 nm. The stereochemistry of the isolated optically active alcohol was identified by comparing the values (+ or –) for the specific rotation detected using a polarimeter, as done previously.¹

Conc./ppm	(<i>R</i>)-2/abs [‡]	(S)-2/abs [‡]	ketone/abs [†]
3.125	18408	18403	-
6.25	34455	34671	64884
12.5	69207	69837	129479
25	133042	134274	256966
50	263249	267577	509690
100	515506	524152	983200

[‡]Absorbance of HPLC analysis, [†]Average

1-2. Data of chromatograms

The time course/chromatograms of the asymmetric oxidation of *rac*-1 (1.2 mM) using a CMME (20 mg) was monitored and quantitatively analyzed under the suggested conditions.¹

[‡]Absorbance of HPLC analysis, [†]Average

2. Gel-filtration for given a single band-F from many band-A in SDS-PAGE

To determine the nature of the redox protein catalyzing asymmetric oxidation, the PP gel-suspension (10 mL) eluted from the PP-gel, which was incubated for 48 h, was first separated into 60 fractions (acquired in 18 mm test tubes with 3.0 mL portions in each tube) using a gel-filtration system. These were determined using a ÄKTA explorer 10S system. Sample (10 mL or 2 mL) was injected onto a

HiLoad16/60 Superdex 200 pg column at 4 °C. Conductivity-brown, 280 nm-blue, 254 nm-pink, and 340 mn red

340 mn-**red**.

2-1. Data of Gel-filtration chromatograms ^{S1,2}

Gel-filtration chromatogram: (-A) the supernatant of the ME suspension acquired by centrifugation, (-B) the supernatant of the 5% PP aqueous suspension acquired by centrifugation, (-C) molecular standards: a, ferritin (440 kDa); b, aldolase (158 kDa); c, conalbumin (75 kDa); d, ovalbumin (44 kDa); e, carbonic anhydrase (29 kDa); f, ribonuclease A (13.7 kDa); g, aprotinin (6.5 kDa).

HPLC chromatograms of each fraction (3.0 mL) after the addition of 0.48 mL of a substrate solution containing rac-2 (0.8 mM) and DMSO (1.03% (v/v)) and incubation of the resulting mixture at 40 °C for 48 h with magnetic stirring at 700 rpm. After reactions, the mixture was extracted by Hexame due to measure both chemical yield and % ee.

Figure S1. The gel-filtration system was used as PP-HasA purification: The PP gel-suspension (10 mL) purified applied by filtration using Vivaspin 2-10K (GE, MWCO =10 kDa) was significantly monitored

for line in conductivity: the target PP-HasA fraction can be collected in red between 110 ml and 120 ml (namely fraction 34-37, especially fraction 36).

Labeling bands:

- 1. Na⁺-type flagellar protein MotY precursor
- 2. unnamed protein product [Clostridium ljungdahlii DSM 13528]
- **3.** GTP diphosphokinase [Phascolarctobacterium succinatutens YIT 12067]
- 4. extracellular ligand-binding receptor [Desulfovibrio africanus str. Walvis Bay]
- 5. oligopeptide ABC transporter substrate-binding protein [Brevibacillus brevis NBRC 100599]
- 6. conserved hypothetical protein [Wolbachia endosymbiont of Drosophila ananassae]
- 7. HasAp gene product [*Pseudomonas fluorescens Pf-5*] from plant commensal bacteria

Figure S2. SDS-PAGE of samples^{S1,S2}: (A) Eluant from the supernatant 1 of the PP gel (10 µL), (B) Aqueous suspension of the sample A precipitate acquired via centrifugation (10 µL), (C) Sample A supernatant acquired via centrifugation (10 µL), (D) Aqueous suspension acquired via the centrifugation of the sample C precipitate generated using 30% (w/v) saturated (NH₄)₂SO₄ (10 µL), (E) Aqueous suspension acquired via the centrifugation of the sample A precipitate generated using 30% (w/v) saturated (NH₄)₂SO₄ (10 µL), (F) Fraction 36 obtained via gel-filtration chromatography using a HITEC-CR20G (Hitachi) system at 10,000 rpm (10 min).

Figure S3. Differences in the content of functional groups among four samples (1) pea protein, (2) PEG (MW: 4000), (3) CMME, (4) PEG-ME treated with 30% (w/v) aqueous $(NH_4)_2SO_4$), and (5) sodium alginate: The red circles indicate oxygen atoms. The peak around 1000–1250 cm⁻¹ is attributed to a sulfate ion, which is thought to be the absorption in the PP gel under aeration.

Figure 4 (a) Element analysis for HasApf dried by using energy dispersive X-ray spectroscopy (JSM-6610LA; Voltage (15 kV), Current (1.0 nA), and Live time (114 sec)), and (b) Mineral analysis for HasApf dried by using radiation induced X-ray emission (JSX-3100R2; Voltage (50 kV), Current (1.0 mA), Live time (100 sec), and Atomosphere (Vacuum))

3. Chromatograms of the N-terminal amino-acid sequence of band-F

Precise analysis of the N-terminal amino acid sequence (protein sequencing) was accomplished using

the protein sequencer PPSQ-21A (Shimadzu) with single band 7 of the PX-redox protein in sample F

monitored by SDS-Page.

3-1. Results of both N-terminal amino-acid sequence and its BLAST query sequence analysis^{\$1,2}

Table S1. Results of a BLAST query sequence analysis based on the N-terminal amino-acid sequence

identified from fraction 36 (band 7)

Cycle No. for fraction 36 (band 7) N-terminal amino-acid sequence identified (33 residues)

1. M S X^a S I S Y S T X^b Y A T N T V A Q Y L X^a D W X^b A Y F G D L

30. N H R E

Cycle No. for YP 262445.1^c

Full length gene and Protein sequence based on a BLAST query sequence analysis

1.	M S I S I S Y S A T	YGGNTVAGYL	T D W S A Y F G D V
	atg agc att tcg atc tct tac agc gct acc	tac ggc ggt aat act gtt gcg caa tac ctg	act gac tgg tcg gcc tac ttc ggc gac gtc
30.	N H P G E V V D G	T N T G G F N P G P	FDGTQYAIKS
	aac cac cgc cca ggc gaa gtg gtc gac ggc	acc aac acc ggt ggc ttc aac ccg ggc ccg	tte gae gge ace eag tae gee ate aag age
60.	TASDAAFVAD	GNLH YTLFSN	PSH TLWGSVD
	acc gcc agt gac gcg gcc ttc gtc gcc gac	ggc aac ctg cac tac acc ctg ttc agc aac	ccg agc cac acc ctg tgg ggc tcg gtg gac
90.	TISLGDTLAG	G S G S N Y N L V S	QEVSFTNLGL
	act atc tcc ctg ggc gac acc ctc gcc ggt	ggt tcg ggc agc aac tac aac ctg gtc agc	cag gaa gtc agc ttc acc aac ctg ggc ctc
120.	N S L K E E G R A G	EVHKVVYGLM	SGDSSALAGE
	aac agc ctg aag gaa gaa ggc cgt gca ggc	gaa gtg cac aag gtg gtc tac ggc ctg atg	agt ggc gac agc tcg gcg ctg gcc ggc gag
150.	I D A L L K A I D P	S L S V N S T F D D	LAAAGVAHVN
	atc gat gcc ctg ctc aag gcg atc gac cca	age etg teg gtg aac tee ace tte gae gae	ctg gcc gct gct ggc gtt gct cac gtc aac
180.	P A A A A A A D V G	LVGVQDVAQD	WALAA
	ccg gct gcc gca gcc gct gcc gat gtt ggc	ctg gtg ggt gtg cag gac gtg gcc cag gac	tgg gcg ctg gcc gcc

X^a: may be Cys (C) but not detected, X^b: many amino acids were detected.

^cYP 262445.1: the accession hit on the query sequence was limited between the query coverage (>93%) and E value (2e-11), a 20.853 Da HasAp gene product [hemophore: *Pseudomonas fluorescens Pf-5*] from plant commensal bacteria, which can inhibit the rhizosphere and produce secondary metabolites that suppress soil-borne plant pathogens.

Red amino acids indicate "hits" between fraction 36 and YP 262445.1°.

Squares indicate the heme-binding site: His-32 (bearing loop), Tyr-75 (axial heme ligand), and His-83 (hydrogen ligand).

Protein sequence based on a BLAST query sequence analysis of Cycle No. for YP 262445.1 is available on NCBI resource: <u>http://www.ncbi.nlm.nih.gov/protein/70732682</u> and the Full length gene sequences on PATRIC: VBIPseFlu72549_5489: <u>http://patricbrc.vbi.vt.edu/portal/portal/patric/Feature?cType=feature&cId=19880237</u>.

References

- (S1) Nagaoka, H. ACS Catal. 2014, 4, 553-565.
- (S2) Nagaoka, H. RSC Adv. 2014, 4, 16333-16344.