Electronic Supporting Information for:

# Structural Features and Near Infra-Red (NIR) Luminescence of Isomeric Yb(III) Bipyridyl- $N$, $N^{\prime}$-Dioxide Coordination Polymers. 

Gail M. Sequeira, ${ }^{a}$ Wayne Y. Tan ${ }^{a}$ and Evan G. Moore* ${ }^{a}$<br>School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia. Ph: +61 (0) 73365 3862, Fax: +61 (0) 73365 4273,<br>E-mail: egmoore@uq.edu.au.

Table of Contents:

### 1.1 Additional Crystallographic Refinement Details

1.2 Additional UV-Vis Spectra
1.3 Summary of Atomic Coordinates and ESP charges from DFT
1.4 References

### 1.1 Additional Crystallographic Refinement Details

Data were with collected using an Oxford Gemini Ultra employing either confocal mirror monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation generated from a sealed tube ( 1.5418 A ) or graphitemonochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation generated from a sealed tube ( $0.71073 \AA$ ) with $\omega$ and $\psi$ scans at 190(2) K. ${ }^{1}$ Data integration and reduction were undertaken with CrysAlisPro. ${ }^{1}$ Subsequent computations were carried out using the WinGX-32 graphical user interface. ${ }^{2}$ Absorption corrections were applied to the data using CrysAlisPro. ${ }^{1}$ Structures were solved by direct methods using SIR97 ${ }^{3}$ then refined and extended with SHELXL-2014. ${ }^{4}$ In general, non-hydrogen atoms with occupancies greater than 0.5 were refined anisotropically. Carbon-bound hydrogen atoms were included in idealised positions and refined using a riding model. Oxygen and nitrogen bound hydrogen atoms were first located in the difference Fourier map before refinement. Disorder was modelled using standard crystallographic methods including constraints, restraints and rigid bodies where necessary, with more specific details of the crystal data and structure refinement for each compound are given in Tables S1-S4 below.

Table S1. Crystal data and structure refinement details for $\left\{\left[\mathrm{Yb}\left(4,4{ }^{\prime} \text {-bpdo }\right)\left(\mathrm{NO}_{3}\right)_{3}\left(\mathbf{C H}_{3} \mathbf{O H}\right)\right]\right\}_{\infty}(\mathbf{1})$

No major difficulties were encountered during the refinement. One of the nitrate anions was disordered over two positions, which were modelled with $50 \%$ occupancy, with the coordinated MeOH molecule similarly disordered over two sites with $50 \%$ occupancy. The H atom of the coordinated MeOH could not be located on the difference map, and was not modelled.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

C22 H24 N10 O24 Yb2

190(2) K
0.71073 A

Monoclinic, C $2 / \mathrm{c}$
$a=15.319(2) \mathrm{A} \quad$ alpha $=90$ deg.

|  | $\mathrm{b}=8.1376(13) \mathrm{A} \quad$ beta $=93.458(10) \mathrm{deg}$. |
| :--- | :--- |
|  | $\mathrm{c}=13.8906(16) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$. |
| Volume | $1728.4(4) \mathrm{A}^{\wedge} 3$ |
| Z, Calculated density | $2,2.226 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$ |
| Absorption coefficient | $5.490 \mathrm{~mm}^{\wedge}-1$ |
| $\mathrm{~F}(000)$ | 1116 |
| Crystal size | $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$ |
| Theta range for data collection | 2.835 to 28.899 deg. |
| Limiting indices | $-20<=\mathrm{h}<=19,-11<=\mathrm{k}<=10,-12<=\mathrm{l}<=17$ |
| Reflections collected $/$ unique | $6212 / 2045[\mathrm{R}(\mathrm{int})=0.0759]$ |
| Completeness to theta $=25.242$ | $99.9 \%$ |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 1.00000 and 0.86961 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$ |
| Data / restraints / parameters | $2045 / 0 / 160$ |
| Goodness-of-fit on $\mathrm{F}^{\wedge} 2$ | 0.971 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0516$, wR2 = 0.0918 |
| R indices (all data) | $\mathrm{R} 1=0.0896$, wR2 = 0.1036 |
| Extinction coefficient | $\mathrm{n} / \mathrm{a}$ |
| Largest diff. peak and hole | 1.882 and -1.085 e. $\mathrm{A} \wedge-3$ |
|  |  |

Table S2. Crystal data and structure refinement details for $\left\{\left[\mathrm{Yb}\left(\mathbf{3 , 3} \mathbf{3}^{\prime}-\text { bpdo }\right)\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]\right\}_{\infty}$ (2)

No major difficulties were encountered during the refinement. One of the nitrate anions was disordered over two positions, which were modelled with ca. $80 \%$ and 20 occupancies. Only the major component was refined anisotropically. Similarly, the coordinated MeOH molecule was also disordered over two sites with $68 \%$ and $32 \%$ occupancy, and only the major component was refined anisotropically. The H atom of the coordinated MeOH could not be located on the difference map, and was not modelled.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=62.494$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
(2)

C22 H24 N10 O24 Yb2
1158.57

190(2) K
1.5418 A

Monoclinic, C 2/c
$\mathrm{a}=34.4809(13) \mathrm{A} \quad$ alpha $=90$ deg.
$\mathrm{b}=7.8110(17) \mathrm{A} \quad$ beta $=124.9660(10)$ deg.
$\mathrm{c}=15.8568(6) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$.
3499.8(8) A^3
$4,2.195 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$10.631 \mathrm{~mm}^{\wedge}-1$
2224
$0.38 \times 0.21 \times 0.19 \mathrm{~mm}$
3.128 to 62.494 deg.
$-33<=\mathrm{h}<=39,-8<=\mathrm{k}<=8,-18<=1<=11$
$11026 / 2772[\mathrm{R}(\mathrm{int})=0.0359]$
99.4 \%

Semi-empirical from equivalents
1.00000 and 0.52678

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
2772 / 1/287
1.035
$\mathrm{R} 1=0.0245, \mathrm{wR} 2=0.0630$
$R 1=0.0266, w R 2=0.0652$
n/a
0.707 and -1.078 e. $\mathrm{A}^{\wedge}-3$

## Table S3. Crystal data and structure refinement details for $\left\{\left[\mathrm{Yb}\left(4,4 \mathbf{4}^{\prime} \text {-bpdo }\right)_{4}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{CHCl}_{3}\right)_{2}\right\}_{\infty}(3)$

The anions and solvent within this structure were found to be extremely disordered. Only four of the nine triflate positions in the asymmetric unit could be successfully located. These were modeled over eight positions each with occupancies ranging from 0.25 to 0.75 and required the use of rigid body restraints and thermal parameter restraints to facilitate realistic modeling. Only one 0.25 occupancy chloroform solvent molecule could be successfully located and it required bond length constraints for realistic modeling. The remaining solvent and anions were smeared over a large region of volume and no satisfactory model could be found, despite multiple attempts including the use of rigid bodies. Accordingly, this contribution to the electron density was treated with the SQUEEZE ${ }^{5}$ function of PLATON ${ }^{6}$ which resulted in far more satisfactory residuals. Despite these minor problems the connectivity of the structure is unambiguous.

| Identification code | $(\mathbf{3})$ |
| :--- | :--- |
| Empirical formula | $\mathrm{C} 47 \mathrm{H} 42 \mathrm{Cl6} \mathrm{F9} \mathrm{N8} \mathrm{O19} \mathrm{S3} \mathrm{Yb}$ |
| Formula weight | 1675.80 |
| Temperature | $190(2) \mathrm{K}$ |
| Wavelength | 1.5418 A |
| Crystal system, space group | Triclinic, P -1 |
| Unit cell dimensions | $\mathrm{a}=24.260(11) \mathrm{A} \quad$ alpha $=83.566(3) \mathrm{deg}$. |
|  | $\mathrm{b}=24.415(8) \mathrm{A} \quad$ beta $=62.292(4) \mathrm{deg}$. |
|  | $\mathrm{c}=24.531(8) \mathrm{A} \quad$ gamma $=61.717(4) \mathrm{deg}$. |
| Volume | $11218(7) \mathrm{A}^{\wedge} 3$ |
| Z, Calculated density | $6,1.488 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$ |
| Absorption coefficient | $5.843 \mathrm{~mm} \wedge-1$ |
| F(000) | $4998 \quad$ |
| Crystal size | $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$ |
| Theta range for data collection | 3.117 to 62.347 deg. |
| Limiting indices | $-21<=\mathrm{h}<=26,-27<=\mathrm{k}<=28,-27<=\mathrm{l}<=26$ |
| Reflections collected $/$ unique | $49687 / 30412[\mathrm{R}(\mathrm{int})=0.0439]$ |

Completeness to theta $=67.680$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
74.9 \%

Semi-empirical from equivalents
1.00000 and 0.51694

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
30412 / 87 / 1635
1.037
$\mathrm{R} 1=0.0679, \mathrm{wR} 2=0.1854$
$\mathrm{R} 1=0.0790, \mathrm{wR} 2=0.1996$
n/a
2.653 and -1.825 e. $\mathrm{A}^{\wedge}-3$

Table S4. Crystal data and structure refinement details for $\left\{\left[\mathrm{Yb}\left(\mathbf{3}, \mathbf{3}{ }^{\prime}-\text { bpdo }\right)_{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{0.5}\left(\mathrm{CHCl}_{3}\right)_{3}\right\}_{\infty}$ (4)

No major difficulties were encountered during the refinement. One of the triflate anions was found to be disordered over two positions, which were modelled with ca. $67 \%$ and $43 \%$ occupancies, and required the use of rigid body restraints and thermal parameter restraints to facilitate realistic modeling. Two of the co-crystallised $\mathrm{CHCl}_{3}$ solvent molecules were similarly refined using bond length constraints to obtain realistic modeling. The remaining MeOH solvent was satisfactorily modelled at $50 \%$ occupancy, with the C and O atoms occupying equivalent positions adjacent to an inversion centre. In this case, the H atom of the MeOH was first located on the difference map, and then refined using a riding model.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions
(4)

C36.50 H29 C19 F9 N6 O15.50 S3 Yb
1558.93

190(2) K
1.5418 A

Triclinic, P-1
$\mathrm{a}=11.2221(8) \mathrm{A} \quad$ alpha $=65.394(7)$ deg.
$\mathrm{b}=16.3393(12) \mathrm{A} \quad$ beta $=76.958(6)$ deg.

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=61.669$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{c}=17.6442(11) \mathrm{A} \quad$ gamma $=74.365(6)$ deg.
2808.8(4) A^3
$2,1.843 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$8.944 \mathrm{~mm}^{\wedge}-1$
1532
$0.40 \times 0.20 \times 0.19 \mathrm{~mm}$
3.035 to 61.669 deg .
$-12<=\mathrm{h}<=11,-18<=\mathrm{k}<=18,-20<=1<=12$
$16150 / 8516[\mathrm{R}(\mathrm{int})=0.0683]$
97.2 \%

Semi-empirical from equivalents
1.00000 and 0.32847

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
8516 / 6 / 659
1.016
$\mathrm{R} 1=0.0993, \mathrm{wR} 2=0.2689$
$\mathrm{R} 1=0.1181, \mathrm{wR} 2=0.2888$
n/a
3.147 and -1.694 e. $\mathrm{A}^{\wedge}-3$

### 1.2 Additional UV-Vis spectra



Fig S1. Observed UV-Vis absorption spectra of the $N$-oxide ligands ( $3,3^{\prime}$-bpdo, solid black line and 4,4'-bpdo, solid red line) in MeOH in comparison to spectra of samples of (3) (dashed black line) and (4) (dashed red line) after dissolution in MeOH .

### 1.3 Summary of Atomic Coordinates and ESP charges from DFT

### 1.3.1 4,4'-bpdo

Final Coordinates:

| 1 | N | -3.0781056184, | 0.0008573231, | -1.819552583 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | C | -3.0787974604, | 0.0002649619, | -0.4455597514 |
| 3 | C | -1.89526069, | 0.0000589538, | 0.2692280664 |
| 4 | C | -0.635335846, | 0.000248186, | -0.3750319883 |
| 5 | C | -0.6778415167, | 0.0004218489, | -1.7894617603 |
| 6 | C | -1.8744170151, | 0.0006681979, | -2.4821701162 |
| 7 | C | 0.6349106243, | -0.0002412057, | 0.3757514195 |
| 8 | C | 1.8945327092, | 0.0004495987, | -0.2690508559 |
| 9 | C | 3.0783775087, | 0.000197265, | 0.4451961804 |
| 10 | N | 3.0783059893, | -0.000855849, | 1.8192154038 |
| 11 | C | 1.8749379978, | -0.0011319529, | 2.4823624981 |
| 12 | C | 0.6780377461, | -0.0009306867, | 1.7901845503 |
| 13 | H | -1.9553999899, | 0.0007675968, | -3.5593693111 |
| 14 | H | 0.2295493382, | 0.0003371182, | -2.3795265918 |
| 15 | H | -1.9752529554, | -0.0001361812, | 1.3486126623 |
| 16 | H | -4.0617294386, | -0.0000219886, | 0.0025065596 |
| 17 | H | 1.9739199015, | 0.001241146, | -1.3485098492 |
| 18 | H | 4.0611189772, | 0.0007446922, | -0.003284873 |
| 19 | H | 1.9563759215, | -0.0014950195, | 3.5595285161 |
| 20 | H | -0.2289958033, | -0.0014450046, | 2.3807434173 |
| 21 | O | 4.2235163934, | -0.0005304548, | 2.4957314471 |
| 22 | O | -4.2229980053, | 0.0005262448, | -2.4966101636 |


| Charges from ESP fit, $\mathrm{RMS}=0.00221$ |  |  |  |  |  |  |  | RRMS $=0.08982:$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | N | 0.486555 | 2 | C | -0.094408 |  |  |  |  |
| 3 | C | -0.208405 | 4 | C | 0.093116 |  |  |  |  |
| 5 | C | -0.208375 | 6 | C | -0.094434 |  |  |  |  |
| 7 | C | 0.096202 | 8 | C | -0.220567 |  |  |  |  |
| 9 | C | -0.077697 | 10 | N | 0.466857 |  |  |  |  |
| 11 | C | -0.077651 | 12 | C | -0.220618 |  |  |  |  |


| 13 | H | 0.154868 | 14 | H | 0.155281 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | H | 0.155293 | 16 | H | 0.154869 |
| 17 | H | 0.162295 | 18 | H | 0.152297 |
| 19 | H | 0.152292 | 20 | H | 0.162304 |
| 21 | O | -0.593479 | 22 | O | -0.596594 |

Charge $=0.00000$

Version=x86-Win32-G03RevB. 04
State $=1-\mathrm{A}$
$\mathrm{HF}=-645.5548016$
RMSD $=5.266 \mathrm{e}-009$
RMSF $=2.864 \mathrm{e}-005$
Dipole $=-0.0004339,0.000001,0.0007482$
$\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 8 \mathrm{~N} 2 \mathrm{O} 2)]$

THE GREAT THING ABOUT BEING IMPERFECT IS THE JOY IT BRINGS OTHERS.
-- SIGN OUTSIDE LAKE AGASSIZ JR. HIGH SCHOOL, FARGO, N.D.
Job cpu time: 0 days 0 hours 7 minutes 51.0 seconds.
File lengths (MBytes): RWF = $39 \mathrm{Int}=0 \mathrm{D} 2 \mathrm{E}=0 \mathrm{Chk}=10 \mathrm{Scr}=1$ Normal termination of Gaussian 03 at Tue May 19 13:20:14 2015.

### 1.3.2 3,3'-bpdo (transoid)

Final Coordinates:

| 1 | C | 0, | 0, | 0. |
| :--- | :--- | :--- | :--- | :--- |
| 2 | C | -0.7417799991, | 0, | -1.2001509968 |
| 3 | C | -1.0845260411, | -1.237199832, | -1.7546914326 |
| 4 | C | 0.0003277545, | -2.4206201193, | 0.0005302852 |
| 5 | C | 0.3618187304, | -1.217715868, | 0.5853987847 |
| 6 | H | 0.2962005432, | 0.9227005538, | 0.479232896 |
| 7 | H | -1.6466299812, | -1.378762032, | -2.664138445 |
| 8 | H | 0.2387801491, | -3.4005167541, | 0.3863304946 |
| 9 | H | 0.9315998278, | -1.235540056, | 1.50726693 |
| 10 | C | -1.1545444206, | 1.2702228058, | -1.8679765415 |
| 11 | C | -1.8896165396, | 1.2403497306, | -3.0572746319 |
| 12 | C | -0.8228470354, | 2.5321927366, | -1.331312102 |


| 13 | H | -2.2075406024, | 0.3473592757, | -3.5716547463 |
| :--- | :--- | :--- | :--- | :--- |
| 14 | C | -1.2337005096, | 3.6922638204, | -1.9960458602 |
| 15 | H | -0.256485535, | 2.62351202, | -0.4149766385 |
| 16 | C | -1.9610267727, | 3.6151647518, | -3.1728116677 |
| 17 | H | -0.9872969014, | 4.6695870826, | -1.5973811128 |
| 18 | H | -2.3152078323, | 4.4590118549, | -3.7458532061 |
| 19 | N | -0.7217990768, | -2.4227171636, | -1.1678231855 |
| 20 | N | -2.2849221276, | 2.3875679383, | -3.6968529381 |
| 21 | O | -1.0719604894, | -3.5753783586, | -1.7343612007 |
| 22 | O, | -2.9835548033, | 2.3072766533, | -4.8271944183 |

Charges from ESP fit, RMS $=0.00216, \quad$ RRMS $=0.08232$ :

| 1 | C | -0.181827 | 2 | C | 0.072667 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | C | -0.174725 | 4 | C | -0.095313 |
| 5 | C | -0.156221 | 6 | H | 0.149423 |
| 7 | H | 0.173121 | 8 | H | 0.154544 |
| 9 | H | 0.162211 | 10 | C | 0.072667 |
| 11 | C | -0.174725 | 12 | C | -0.181827 |
| 13 | H | 0.173121 | 14 | C | -0.156221 |
| 15 | H | 0.149423 | 16 | C | -0.095313 |
| 17 | H | 0.162211 | 18 | H | 0.154544 |
| 19 | N | 0.490711 | 20 | N | 0.490711 |
| 21 | O | -0.594592 | 22 | O | -0.594592 |

Charge $=0.00000$

Version=x86-Win32-G03RevB. 04
State $=1-\mathrm{A} 1$
$\mathrm{HF}=-645.5493417$
RMSD $=3.930 \mathrm{e}-009$
RMSF $=3.939 \mathrm{e}-005$
Dipole $=-1.7659934,0 .,-2.8572605$
$\mathrm{PG}=\mathrm{C} 02 \mathrm{~V}[\mathrm{SGV}(\mathrm{C} 10 \mathrm{H} 8 \mathrm{~N} 2 \mathrm{O} 2)]$

THE LENGTH OF A MEETING IS PROPORTIONAL TO THE SQUARE OF THE PARTICIPANTS.
Job cpu time: 0 days 0 hours 1 minutes 52.0 seconds.
File lengths (MBytes): RWF= $36 \mathrm{Int}=0 \mathrm{D} 2 \mathrm{E}=0 \mathrm{Chk}=9 \mathrm{Scr}=1$

Normal termination of Gaussian 03 at Tue May 19 13:25:00 2015.

### 1.3.3 3,3'-bpdo (cisoid)

| 1 | C | $0 .$, | $0 .$, | 0. |
| :--- | :--- | :--- | :--- | :--- |
| 2 | C | 0.0001689103, | 1.4113440499, | 0.0000031557 |
| 3 | C | -1.1786088109, | 2.0625858132, | 0.3740503007 |
| 4 | C | -2.3079781566, | 0.0015289527, | 0.7327950952 |
| 5 | C | -1.1613155108, | -0.6866160901, | 0.3686783524 |
| 6 | H | 0.8780040213, | -0.5658341467, | -0.278741897 |
| 7 | H | -1.311984599, | 3.1315924031, | 0.4162445614 |
| 8 | H | -3.2417920463, | -0.4522572743, | 1.0294280964 |
| 9 | H | -1.1787568097, | -1.7702838872, | 0.3743338958 |
| 10 | C | 1.2033687948, | 2.2090159714, | -0.3815763459 |
| 11 | C | 2.3822372126, | 1.5577741971, | -0.755337529 |
| 12 | C | 1.2035377051, | 3.6203600213, | -0.3815731903 |
| 13 | H | 2.5155271414, | 0.4887676178, | -0.7978025003 |
| 14 | C | 2.3650714136, | 4.3069760845, | -0.7495635508 |
| 15 | H | 0.3253907602, | 4.1861941831, | -0.1032819173 |
| 16 | C | 3.5119597014, | 3.6188310127, | -1.1129688906 |
| 17 | H | 2.3826091648, | 5.3906438694, | -0.7549149847 |
| 18 | H | 4.4460490444, | 4.0726172008, | -1.4087334128 |
| 19 | N | -2.3092443639, | 1.3744069598, | 0.7327011553 |
| 20 | N | 3.5129199278, | 2.2459530449, | -1.1138396833 |
| 21 | O | -3.4071747926, | 2.0439033823, | 1.0810997636 |
| 22 | O | 4.6109367416, | 1.576456612, | -1.4619659236 |

Version=x86-Win32-G03RevB. 04
State $=1-A$
$\mathrm{HF}=-645.5503069$
$R M S D=3.229 \mathrm{e}-009$
RMSF $=2.414 \mathrm{e}-005$

## Dipole=0.0000001,0.0001523,0. <br> PG=C01 [X(C10H8N2O2)]

| Charges from ESP fit, RMS $=$ |  |  |  |  | 0.00163 |
| :--- | :--- | :--- | :---: | :---: | :--- |
| 1 | C | -0.232978 | 2 | C | 0.083046 |
| 3 | C | -0.175920 | 4 | C | -0.161740 |
| 5 | C | -0.110774 | 6 | H | 0.182207 |
| 7 | H | 0.156408 | 8 | H | 0.177819 |
| 9 | H | 0.160790 | 10 | C | 0.131728 |
| 11 | C | -0.188628 | 12 | C | -0.255879 |
| 13 | H | 0.155666 | 14 | C | -0.112316 |
| 15 | H | 0.183027 | 16 | C | -0.143055 |
| 17 | H | 0.162556 | 18 | H | 0.171670 |
| 19 | N | 0.504607 | 20 | N | 0.491094 |
| 21 | O | -0.591835 | 22 | O | -0.587492 |

Charge $=0.00000$

TO ERR IS HUMAN - AND TO BLAME IT ON A COMPUTER IS EVEN MORE SO.
Job cpu time: 0 days 0 hours 3 minutes 52.0 seconds.
File lengths (MBytes): RWF $=33 \mathrm{Int}=0 \mathrm{D} 2 \mathrm{E}=0 \mathrm{Chk}=9 \mathrm{Scr}=1$ Normal termination of Gaussian 03 at Tue May 19 13:31:04 2015.

### 1.4 References

(1) Technologies, A. CrysAlisPro Agilent Technologies Ltd: Yarton, Oxfordshire, UK, 2009-2011
(2) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.
(3) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giocavazzo, C.; Gaugliardi, A.; Moliterni, G. C.; Polidori, G.; Spagna, S. J. Appl. Cryst. 1999, 32, 115.
(4) Sheldrick, G. M. SHELX-2014: Programs for Crystal Structure Analysis University of Göttingen: Göttingen, 2014
(5) van der Sluis, P.; Spek, A. L. Acta Crystallographica Section A 1990, 46, 194.
(6) Spek, A. L. PLATON: A Multipurpose Crystallographic Tool Utrecht University: Utrecht, The Netherlands, 2008

