Supplementary Materials

Trimetallic strategy towards Zn^{II}₄Dy^{III}₂Cr^{III}₂ and Zn^{II}₄Dy^{III}₂Co^{III}₂ singleion magnets

Kong-Qiu Hu,[†] Xiang Jiang,[†] Shu-Qi Wu,[†] Cai-Ming Liu,[‡] Ai-Li Cui,[†] Hui-Zhong Kou*[†]

[†] Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. [‡] Beijing

National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Physical measurements

IR spectra were recorded on a Nicolet Magna-IR 750 spectrometer in the 4000-450 cm⁻¹ region. Elemental analyses (C, H, N) were performed on an Elementar Vario MICRO CUBE analyzer. Metallic elemental analyses were carried out on an inductively coupled plasma atomic emission spectrometer. Temperature- and field-dependent magnetic susceptibility measurements were carried out on a Quantum Design SQUID magnetometer. The experimental susceptibilities were corrected for the diamagnetism of the constituent atoms (Pascal's Tables).

Single crystal X-ray data were collected on a Rigaku Saturn724+ CCD diffractometer for complexes 1 and 2. The structures were solved by direct method (SHELXS-97) and refined by full-matrix least-squares (SHELXL-2014) on F^2 . Anisotropic thermal parameters were used for the non-hydrogen atoms and isotropic parameters for the hydrogen atoms. Hydrogen atoms were added geometrically and refined using a riding model. Because of the weak crystal diffraction of complexes 1 and 2, some solvents

DMF/CH₃CN/H₂O molecules experience serious disorder, and cannot be completely found from the difference Fourier map. Therefore the SQUEEZE function of PLATON was applied.

Synthesis of { $[Zn(Me_2valpn)]_2Dy(H_2O)Co(CN)_6$ }₂·15H₂O·2DMF·5CH₃CN *(1).* Zn(Me_2valpn) (93 mg, 0.2 mmol) and Dy(NO₃)₃·6H₂O (46mg, 0.1 mmol) were mixed in MeCN (10 mL), and K₃[Co(CN)₆] (33 mg, 0.1 mmol) in water (5 mL) was then added into the above solution. The resultant solution was stirred for 5 minutes, and was filtered. To the filtrate, DMF (1 mL) was added. The solution was slowly evaporated at room temperature for 2 hrs to afford colorless block single crystals. IR (KBr, cm⁻¹): 2127,2162 (C=N). Anal. Calcd for complex 1 (C₁₁₂H₁₅₉Dy₂Co₂N₂₇Zn₄O₃₅): C 42.73, H 5.09, N 12.01, Co 3.74, Zn 8.31, Dy 10.32. Measured: C 42.69, H 5.39, N 11.74, Co 3.8, Zn 8.6, Dy 10.1.

Synthesis of { $[Zn(Me_2valpn)]_2Dy(H_2O)Cr(CN)_6$ }₂·7H₂O·4DMF *(2).* Zn(Me_2valpn) (93 mg, 0.2 mmol) and Dy(NO₃)₃·6H₂O (46mg, 0.1 mmol) were mixed in MeCN (10 mL), and K₃[Cr(CN)₆] (32 mg, 0.1 mmol) in water (5 mL) was then added into the above solution. The resultant solution was stirred for 5 minutes, and was filtered. To the filtrate, DMF (1 mL) was added. The solution was slowly evaporated at room temperature for 2 hrs to afford buff block single crystals. IR (KBr, cm⁻¹): 2108, 2168 (C=N). Anal. Calcd for complex **2** (C₁₀₈H₁₄₀Dy₂Cr₂N₂₄Zn₄O₂₉): C 44.29, H 4.82, N 11.48, Cr 3.55, Zn 8.93, Dy 11.10. Measured: C 44.62, H 4.93, N 11.64, Cr 3.6, Zn 8.6, Dy 11.0.

complex	1	2
formula	$C_{112}H_{159}Dy_2Co_2N_{27}Zn_4O_{35}$	$C_{108}H_{140}Dy_2Cr_2N_{24}Zn_4O_{29}\\$
Fw	3148.00	2928.92
<i>T</i> /K	163	163
crystal system	Monoclinic	Monoclinic
space group	P2(1)/c	<i>P</i> 2(1)/ <i>c</i>
a/Å	20.089(3)	16.929(3)
b/Å	15.835(2)	22.842(5)
$c/{ m \AA}$	28.012(3)	20.172(4)
$eta/^{\circ}$	128.896(7)	105.86(3)
$V/\text{\AA}^3$	6935(2)	7503(3)
Ζ	2	2
$ ho_{ m calcd}/ m g\ cm^{-3}$	1.507	1.296
μ (MoKa)/ mm ⁻¹	2.057	1.816
F(000)	3212	2976
Ref [I > 2σ]	12951	8868
GOF	1.065	0.980
$R1[I > 2\sigma(I)]^a$	0.0479	0.1000
wR2 (all data) ^b	0.1403	0.2924

Table S1. X-ray crystallographic parameters for complexes 1 and 2 $\,$

 ${}^{a}R_{1} = \sum // F_{o} | - |F_{c}| / \sum |F_{o}|_{b} WR_{2} = \left\{ \sum \left[w (F_{o}^{2} - F_{c}^{2})^{2} \right] / \sum \left[w (F_{o}^{2})^{2} \right] \right\}^{1/2}$

Tuble	52 Selected bolid distail	ices (11) and bond angles () for compre	
Dy(1)–O(6)	2.323(3)	Zn(2)–O(6)	2.071(3)
Dy(1)–O(1W)	2.316(3)	Zn(1)–N(6)	2.018(4)
Dy(1)–O(2)	2.334(3)	Zn(1)–O(1)	2.028(3)
Dy(1)–O(5)	2.376(3)	Zn(1)–N(4)	2.042(4)
Dy(1)–O(1)	2.393(3)	Zn(1)–N(3)	2.074(4)
Dy(1)–O(7)	2.478(3)	Zn(1)–O(2)	2.087(3)
Dy(1)–O(3)	2.485(3)	Co(1A)–C(6)	1.789(5)
Dy(1)–O(4)	2.535(3)	Co(1A)–C(10A)	1.905(10)
Dy(1)–O(8)	2.554(3)	Co(1A)–C(9)	1.812(5)
Zn(2)–N(9)	2.006(4)	Co(1A)–C(11A)	1.932(11)
Zn(2)–N(2)	2.050(4)	Co(1A)–C(8B)	1.946(12)
Zn(2)–N(1)	2.067(4)	Co(1A)–C(7A)	1.903(10)
Zn(2)–O(5)	2.058(3)	Co(1B)–C(6)	1.999(6)
Co(1B)–C8A)	1.877(14)	Co(1B)–C(9)	1.974(6)
Co(1B)–C(11B)	1.878(14)	Co(1B)–C(10B)	1.881(13)
Co(1B)–C7B)	1.941(16)		
Co(1A)–C(6)–N(6)	173.3(5)	N(6)-C(6)-Co(1B)	170.5(5)
Co(1A)–C(9)–N(9)	171.8(5)	N(10B)-C(10B)-Co(1B)	179.2(16)
Co(1A)–C(8B)–N(8B)	178.0(10)	N(8A)C(8A)Co(1B)	176.9(15)
Co(1A)–C(7A)–N(7A)	178(3)	N(7B)-C(7B)-Co(1B)	175(4)
Co(1A)–C(10A)–N(10A)	176.1(10)	Zn(2)–O(5)–Dy(1)	107.46(11)
Co(1A)–C(11A)–N(11A)	178.6(12)	Zn(1)–O(2)–Dy(1)	108.05(12)
N(11B)-C(11B)-Co(1B)	177.3(18)	Zn(2)–O(6)–Dy(1)	108.97(12)
N(9)-C(9)-Co(1B)	171.8(5)	Zn(1)-O(1)-Dy(1)	107.91(12)
C(6)–N(6)–Zn(1)	155.8(4)	C(9)-N(9)-Zn(2)#1	160.2(4)

Table S2 Selected bond distances (Å) and bond angles (°) for complex 1

#1: 1-x, 2-y, 2-z

Dy(1)-O(5)	2.356(6)	Zn(2)–N(7)	2.133(11)
Dy(1)–O(1)	2.364(7)	Zn(1)–O(6)	2.039(6)
Dy(1)–O(1W)	2.416(7)	Zn(1)–N(9)	2.066(9)
Dy(1)–O(2)	2.433(7)	Zn(1)-N(10)	2.066(9)
Dy(1)–O(6)	2.467(6)	Zn(1)–N(1)	2.073(8)
Dy(1)–O(8)	2.526(6)	Zn(1)–O(5)	2.122(6)
Dy(1)–O(4)	2.536(6)	Cr(1)–C(4)	2.071(7)
Dy(1)–O(7)	2.571(6)	Cr(1)–C(1)	2.086(10)
Dy(1)–O(3)	2.595(6)	Cr(1)–C(5)	2.095(9)
Zn(2)–N(8)	2.054(10)	Cr(1)–C(6)	2.096(10)
Zn(2)–N(3)	2.069(9)	Cr(1)–C(3)	2.111(10)
Zn(2)–O(2)	2.084(7)	Cr(1)–C(2)	2.131(11)
Zn(2)–O(1)	2.095(8)		
Cr(1)–C(1)–N(1)	172.9(10)	Cr(1)–C(6)–N(6)	175.5(12)
Cr(1)–C(2)–N(2)	172.9(8)	Zn(2)–O(1)–Dy(1)	109.1(3)
Cr(1)–C(3)–N(3)	172.6(9)	Zn(2)–O(2)–Dy(1)	107.0(3)
Cr(1)–C(4)–N(4)	169.0(13)	Zn(1)-O(5)-Dy(1)	108.5(2)
Cr(1)–C(5)–N(5)	177.0(10)	Zn(1)-O(6)-Dy(1)	107.3(2)

Table S3 Selected bond distances (Å) and bond angles (°) for complex ${\bf 2}$

Table S4. Continuous Shape Measures calculation for the Dy(III) ions in complexes 1-2

Nine-coordination

Complex 1, Dy structures

Structure	EDO	OPV 0	HBPY-		JCC	CCU 0	JCSAP	CSADD 0	JTCTP	TCTPR	JTDIC	иц о	MEE 0		
[ML9]	EF-9	OP 1-9	OP 1-9	011-9	9	JTC-9	U-9	0.0-9	R-9	CSAF K-9	R-9	-9	-9	пп-9	NIF F-9
ABOXIY	34.512	21.991	17.249	14.843	8.405	7.387	3.826	2.483	5.402	2.572	10.197	7.195	2.266		

Nine-coordination

Complex **2**, Dy structures

Structure	ED O	OBV 0	HBPY-		JCCU-	CCU	JCSAP	CSADD 0	ЈТСТР	TCTPR	JTDIC-	иц о	MEE 0
[ML9]	EP-9	OP 1-9	9	J1C-9	9	-9	R-9	USAPK-9	R-9	-9	9	пп-9	NIF F-9
ABOXIY	34.297	21.691	17.461	14.330	8.812	7.656	3.577	2.218	5.072	2.403	9.592	7.642	2.105

EP-9	1	D9h	Enneagon
OPY-9	2	C8v	Octagonal pyramid
HBPY-9	3	D7h	Heptagonal bipyramid
JTC-9	4	C3v	Johnson triangular cupola J3
JCCU-9	5	C4v	Capped cube J8
CCU-9	6	C4v	Spherical-relaxed capped cube
JCSAPR-9	7	C4v	Capped square antiprism J10
CSAPR-9	8	C4v	Spherical capped square antiprism
JTCTPR-9	9	D3h	Tricapped trigonal prism J51
TCTPR-9	10	D3h	Spherical tricapped trigonal prism
JTDIC-9	11	C3v	Tridiminished icosahedron J63
HH-9	12	C2v	Hula-hoop
MFF-9	13	Cs	Muffin

Fig. S1. IR spectra of complexes 1-2.

Fig. S2. The hydrogen bonding in complex 1.

Fig. S3. The octanuclear cyclic structure of complex 2.

Fig. S4. Temperature dependence of $\chi_m T$ for complexes 1-2.

Fig. S5. Temperature dependence of the magnetic susceptibilities at 2-5 K for complexes 1-2.

Fig. S6. The $ln(\tau)$ vs. T^{-1} plots based on the Arrhenius relationship for complexes **1** (a) and **2** (b).

Fig. S7. The out-of-phase (χ_m) ac magnetic susceptibilities for complexes **1-2** in 997 Hz under zero and 2 kOe dc field.

Fig. S8. The in-phase (χ_m ') ac magnetic susceptibilities for complexes 1-2 under zero and 2 kOe dc field.

Fit of Cole-Cole plots. The derivation of Debye model mentioned in the text is applied and displayed here:

$$\begin{split} \chi'_{M} &= \chi_{1} + (\chi_{T} - \chi_{S}) \left(\frac{\beta (1 + (\omega\tau_{1})^{1-\alpha_{1}}) \sin\left(\frac{\pi}{2}\alpha_{1}\right)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin\left(\frac{\pi}{2}\alpha_{1}\right) + (\omega\tau_{1})^{2(1-\alpha_{1})}} + \frac{(1-\beta)(1 + (\omega\tau_{2})^{1-\alpha_{2}}) \sin\left(\frac{\pi}{2}\alpha_{2}\right)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin\left(\frac{\pi}{2}\alpha_{2}\right) + (\omega\tau_{2})^{2(1-\alpha_{2})}} \right) \\ \chi''_{M} &= (\chi_{T} - \chi_{S}) \left(\frac{\beta ((\omega\tau_{1})^{1-\alpha_{1}}) \cos\left(\frac{\pi}{2}\alpha_{1}\right)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin\left(\frac{\pi}{2}\alpha_{1}\right) + (\omega\tau_{1})^{2(1-\alpha_{1})}} + \frac{(1-\beta)((\omega\tau_{2})^{1-\alpha_{2}}) \cos\left(\frac{\pi}{2}\alpha_{2}\right)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin\left(\frac{\pi}{2}\alpha_{2}\right) + (\omega\tau_{2})^{2(1-\alpha_{2})}} \right) \end{split}$$

<i>T /</i> K		α		τ		χ		
	α_1	α_2	$ au_1$	τ_2	χ_{T}	χs	р	
2	0.14	0.42	0.187	0.028	12.59	0.16	0.38	
4	0.41	0.11	0.0249	0.164	6.706	0.11	0.58	
6	0.31	0.028	0.0121	0.0672	4.44	0.41	0.13	
7	0.029	0.258	0.037	7.4×10 ⁻³	3.81	0.12	0.61	
8	0.21	0.024	4.8×10 ⁻³	0.021	3.34	0.12	0.35	
9	0.17	0.018	3.3×10 ⁻³	0.011	2.98	0.10	0.37	
10	4.6×10 ⁻³	0.103	6.5×10 ⁻³	2.3×10 ⁻³	2.69	0.11	0.55	
11	1.5×10 ⁻¹⁴	0.079	3.6×10 ⁻³	1.4×10 ⁻³	2.45	0.11	0.43	
12	0.046	2.69×10 ⁻¹⁴	0.046	2.7×10 ⁻¹⁴	2.25	2.8×10 ⁻¹⁸	0.72	

 Table S5. Parameters in double magnetic relaxations for complex 1

Table S6. Parameters in double magnetic relaxations for complex 2

<i>T /</i> K		α		τ		χ		
	α_1	α_2	$ au_1$	τ_2	χ_{T}	χs	Р	
2	0.24	0.42	0.00142	72.29	26.05	0.6341	0.0438	
4	0.38	0.21	1.2×10 ⁻⁴	3.61	11.93	1.4×10 ⁻¹⁵	0.0845	
6	0.21	0.31	0.328	3.4×10 ⁻⁵	8.71	3.6×10 ⁻¹³	0.93	
8	0.32	0.09	0.0129	0.0642	6.51	0.39	0.34	
10	0.373	1.2×10 ⁻¹³	0.0038	0.014	5.35	0.24	0.59	
12	0.064	0.13	0.0034	7.7×10 ⁻⁴	4.39	0.63	0.59	

Fig. S9. Cole-Cole plots of complexes 1 ($H_{dc} = 0$ Oe and $H_{ac} = 2.5$ Oe) and 2 ($H_{dc} = 2$ kOe and $H_{ac} = 2.5$ Oe). The solid lines represent the best fit results.

Fig. S10. Direction of the anisotropic axis of Dy(III) ions in complexes 1 (Left) and 2 (Right).

Fig. S11. Powder XRD patterns of complexes 1 and 2.